组卷网 > 章节选题 > 1.3 集合的基本运算
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 22 道试题
1 . 设为正整数,集合对于,设集合.
(1)若,写出集合
(2)若,且满足,求证:
(3)若,且 ,求证: .
7日内更新 | 147次组卷 | 1卷引用:北京市朝阳区2024届高三下学期质量检测二数学试题
2 . 若非空集合AB,存在对应关系f,使A中的每一个元素aB中总有唯一的元素b与它对应,则称这种对应为从AB的映射,记作fAB
设集合),且.设有序四元数集合.对于给定的集合B,定义映射fPQ,记为,按映射f,若),则;若),则.记
(1)若,写出Y,并求
(2)若,求所有的总和;
(3)对于给定的,记,求所有的总和(用含m的式子表示).
2024-05-07更新 | 412次组卷 | 1卷引用:云南省昆明市2024届”三诊一模“高三复习教学质量检测数学试题
解答题-证明题 | 困难(0.15) |
名校
3 . 对称变换在对称数学中具有重要的研究意义.若一个平面图形Km(旋转变换或反射变换)的作用下仍然与原图形重合,就称K具有对称性,并记mK的一个对称变换.例如,正三角形R(绕中心O作120°的旋转)的作用下仍然与R重合(如图1图2所示),所以R的一个对称变换,考虑到变换前后R的三个顶点间的对应关系,记;又如,R(关于对称轴所在直线的反射)的作用下仍然与R重合(如图1图3所示),所以也是R的一个对称变换,类似地,记.记正三角形R的所有对称变换构成集合S.一个非空集合G对于给定的代数运算.来说作成一个群,假如同时满足:
I.
II.
Ⅲ.
Ⅳ.
对于一个群G,称Ⅲ中的e为群G的单位元,称Ⅳ中的a在群G中的逆元.一个群G的一个非空子集H叫做G的一个子群,假如H对于G的代数运算来说作成一个群.

   

(1)直接写出集合S(用符号语言表示S中的元素);
(2)同一个对称变换的符号语言表达形式不唯一,如.对于集合S中的元素,定义一种新运算*,规则如下:
①证明集合S对于给定的代数运算*来说作成一个群;
②已知H是群G的一个子群,e分别是GH的单位元,分别是a在群G,群H中的逆元.猜想e之间的关系以及之间的关系,并给出证明;
③写出群S的所有子群.
2024-04-15更新 | 1062次组卷 | 4卷引用:安徽省芜湖市安徽师范大学附属中学2024届高三第二次模拟考试数学试题
解答题-证明题 | 困难(0.15) |
名校
4 . 已知集合),若存在数阵满足:


则称集合为“好集合”,并称数阵的一个“好数阵”.
(1)已知数阵的一个“好数阵”,试写出的值;
(2)若集合为“好集合”,证明:集合的“好数阵”必有偶数个;
(3)判断是否为“好集合”.若是,求出满足条件的所有“好数阵”;若不是,说明理由.
智能选题,一键自动生成优质试卷~
5 . 已知集合,其中都是的子集且互不相同,记的元素个数,的元素个数.
(1)若,直接写出所有满足条件的集合
(2)若,且对任意,都有,求的最大值;
(3)若且对任意,都有,求的最大值.
6 . 设集合,如果对于的每一个含有个元素的子集PP中必有4个元素的和等于,称正整数为集合的一个“相关数”.
(1)当时,判断5和6是否为集合的“相关数”,说明理由;
(2)若为集合的“相关数”,证明:
(3)给定正整数,求集合的“相关数”m的最小值.
2023-08-27更新 | 536次组卷 | 6卷引用:北京市西城区2017届高三二模数学理科试题
7 . 设A是正整数集的一个非空子集,如果对于任意,都有,则称A为自邻集.记集合的所有子集中的自邻集的个数为.
(1)直接写出的所有自邻集;
(2)若为偶数且,求证:的所有含5个元素的子集中,自邻集的个数是偶数;
(3)若,求证:.
解答题-证明题 | 较难(0.4) |
解题方法
8 . 已知集合.若对于集合M的任意k元子集AA中必有4个元素的和为,则称这样的正整数k为“好数”,所有“好数”的最小值记作.
(1)当,即集合.
(i)写出M的一个子集B,且B中存在4个元素的和为
(ii)写出M的一个5元子集C,使得C中任意4个元素的和大于
(2)证明:
(3)证明:.
2023-04-06更新 | 869次组卷 | 6卷引用:北京市门头沟区2023届高三综合练习(一)数学试题
解答题-证明题 | 较难(0.4) |
名校
9 . 给定正整数,设集合.对于集合中的任意元素,记.设,且集合,对于中任意元素,若则称具有性质
(1)判断集合是否具有性质?说明理由;
(2)判断是否存在具有性质的集合,并加以证明;
(3)若集合具有性质,证明:
2023-03-27更新 | 1926次组卷 | 13卷引用:北京市西城区2023届高三一模数学试题
10 . 已知集合.对集合A中的任意元素,定义,当正整数时,定义(约定).
(1)若,求
(2)若满足,求的所有可能结果;
(3)是否存在正整数n使得对任意都有?若存在,求出n的所有取值;若不存在,说明理由.
2022-05-17更新 | 1458次组卷 | 4卷引用:北京市朝阳区2022届高三二模数学试题
共计 平均难度:一般