组卷网 > 章节选题 > 选修2-3
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 61 道试题
1 . 设.如果存在使得,那么就说可被整除(或整除),记做且称的倍数,的约数(也可称为除数、因数).不能被整除就记做.由整除的定义,不难得出整除的下面几条性质:①若,则;②互质,若,则;③若,则,其中.
(1)若数列满足,,其前项和为,证明:
(2)若为奇数,求证:能被整除;
(3)对于整数,求证:可整除.
2 . 如图所示数阵,第行共有个数,第行的第1个数为,第2个数为,第个数为.规定:
   
      
         
            
               
                  

(1)试判断每一行的最后两个数的大小关系,并证明你的结论;
(2)求证:每一行的所在数之和等于下一行的最后一个数;
2024-05-31更新 | 152次组卷 | 1卷引用:2024届山东省五莲县第一中学高考模拟(二)数学试题
3 . 在足球比赛中,有时需通过点球决定胜负.
(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将(也称为守门员)也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有的可能性扑不到球.不考虑其它因素,在一次点球大战中,求门将在前三次扑到点球的个数的分布列和期望;
(2)好成绩的取得离不开平时的努力训练,甲丙三名前锋队员在某次传接球的训练中,球从甲脚下开始,等可能地随机传向另外人中的 人,接球者接到球后再等可能地随机传向另外人中的人,如此不停地传下去,假设传出的球都能接住.记第次传球之前球在甲脚下的概率为,易知
① 试证明:为等比数列;
② 设第次传球之前球在乙脚下的概率为,比较的大小.
2024-06-12更新 | 231次组卷 | 1卷引用:2024届山东省泰安肥城市高考仿真模拟(二)数学试题
4 . 数列中,从第二项起,每一项与其前一项的差组成的数列称为的一阶差数列,记为,依此类推,的一阶差数列称为的二阶差数列,记为,….如果一个数列p阶差数列是等比数列,则称数列p阶等比数列
(1)已知数列满足
(ⅰ)求
(ⅱ)证明:是一阶等比数列;
(2)已知数列为二阶等比数列,其前5项分别为,求及满足为整数的所有n值.
5 . (1)在的展开式中,求形如)的所有项的系数之和.
(2)证明:展开式中的常数项为
(3)设的小数部分为,比较与1的大小
6 . 如图所示数阵,第行共有个数,第行的第1个数为,第2个数为,第个数为.规定:.

(1)计算前4行的最后两个数,试判断每一行的最后两个数的大小关系,并证明你的结论;
(2)从第1行起,每一行最后一个数依次构成数列,设数列的前项和为,是否存在正整数,使得对任意正整数恒成立?如存在,请求出的最大值;如不存在,请说明理由.
7日内更新 | 34次组卷 | 1卷引用:山东省淄博实验中学2023-2024学年高二下学期第二次诊断考试(6月月考)数学试题
7 . 某中学有AB两个餐厅为老师与学生们提供午餐与晚餐服务,王同学、张老师两人每天午餐和晚餐都在学校就餐,近一个月(30天)选择餐厅就餐情况统计如下:
选择餐厅情况(午餐,晚餐)
王同学9天6天12天3天
张老师6天6天6天12天
假设王同学、张老师选择餐厅相互独立,用频率估计概率.
(1)估计一天中王同学午餐和晚餐选择不同餐厅就餐的概率;
(2)记X为王同学、张老师在一天中就餐餐厅的个数,求X的分布列和数学期望
(3)假设M表示事件“A餐厅推出优惠套餐”,N表示事件“某学生去A餐厅就餐”,,已知推出优惠套餐的情况下学生去该餐厅就餐的概率会比不推出优惠套餐的情况下去该餐厅就餐的概率要大,证明.
2023-12-14更新 | 1656次组卷 | 8卷引用:山东省济南市山东省实验中学2024届高三上学期第三次诊断考试数学试题
8 . 在机器学习中,精确率、召回率、卡帕系数是衡量算法性能的重要指标.科研机构为了测试某型号扫雷机器人的检测效果,将模拟战场分为100个位点,并在部分位点部署地雷.扫雷机器人依次对每个位点进行检测,表示事件“选到的位点实际有雷”,表示事件“选到的位点检测到有雷”,定义:精确率,召回率,卡帕系数,其中
(1)若某次测试的结果如下表所示,求该扫雷机器人的精确率和召回率

实际有雷实际无雷总计
检测到有雷402464
检测到无雷102636
总计5050100

(2)对任意一次测试,证明:
(3)若,则认为机器人的检测效果良好;若,则认为检测效果一般;若,则认为检测效果差.根据卡帕系数评价(1)中机器人的检测效果.
2024-06-02更新 | 320次组卷 | 2卷引用:山东省齐鲁名校联盟2023-2024学年高三下学期考前质量检测数学试题

9 . 某品牌女装专卖店设计摸球抽奖促销活动,每位顾客只用一个会员号登陆,每次消费都有一次随机摸球的机会.已知顾客第一次摸球抽中奖品的概率为;从第二次摸球开始,若前一次没抽中奖品,则这次抽中的概率为,若前一次抽中奖品,则这次抽中的概率为.记该顾客第n次摸球抽中奖品的概率为


(1)求的值,并探究数列的通项公式;
(2)求该顾客第几次摸球抽中奖品的概率最大,请给出证明过程.
2023-10-14更新 | 2040次组卷 | 8卷引用:山东省实验中学2024届高三第一次诊断考试数学试题
10 . 为了解学生中午的用餐方式(在食堂就餐或点外卖)与最近食堂间的距离的关系,某大学于某日中午随机调查了2000名学生,获得了下面的频率分布表(不完整),并且由该频率分布表,可估计学生与最近食堂间的平均距离为(同一组数据以该组数据所在区间的中点值作为代表).
学生与最近食堂间的距离合计
在食堂就餐

0.15

0.10

0.00

0.50

点外卖

0.20

0.00

0.50

合计

0.20

0.15

0.00

1.00

(1)求出的值并补全频率分布表;
(2)根据频率分布表补全样本容量为列联表(如下表),并根据小概率值的独立性检验,能否认为学生中午的用餐方式与学生距最近食堂的远近有关(当学生与最近食堂间的距离不超过时,认为较近,否则认为较远);
根据频率分布表列出如下的列联表:

学生距最近食堂较近

学生距最近食堂较远

合计

在食堂就餐

点外卖

合计

(3)一般情况下,学生更愿意去饭菜更美味的食堂就餐.该校距李明较近的有甲、乙两家食堂,且他每天中午都选择食堂甲或乙就餐.记他选择去甲食堂就餐为事件A,他认为甲食堂的饭菜比乙食堂的美味为事件D,且DA均为随机事件,证明:.
附:,其中.
0.100.0100.001
2.7066.63510.828
2024-06-11更新 | 84次组卷 | 1卷引用:2024届山东省泰安肥城市高考仿真模拟(三)数学试题
共计 平均难度:一般