组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 330 道试题
1 . 任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环图,这就是数学史上著名的“冰霓猜想”(又称“角谷猜想”等).已知数列满足:,则       
A.1B.2C.3D.4
2024-04-04更新 | 176次组卷 | 1卷引用:四川省绵阳南山中学2023-2024学年高二下学期3月月考试题
2 . 我国南宋时期杰出的数学家秦九韶在《数书九章》中提出了“三斜求积术”,其内容为:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积.”把以上文字写成公式,即(其中S为面积,abc的三个内角ABC所对的边).若,且,则利用“三斜求积”公式可得的面积       
A.B.C.D.
2024-04-01更新 | 1153次组卷 | 11卷引用:四川省南充高级中学2023-2024学年高一下学期第二次月考(5月)数学试卷
3 . 阿基米德有这样一句流传很久的名言:“给我一个支点,我就能撬起整个地球!”这句话说的便是杠杆原理,即“动力×动力臂=阻力×阻力臂”.现有一商店使用两臂不等长的天平称黄金,一位顾客到店里购买黄金,售货员先将的砝码放在天平左盘中,取出黄金放在天平右盘中使天平平衡;再将的砝码放在天平右盘中,取黄金放在天平左盘中使天平平衡,最后将称得的黄金交给顾客,则下列选项正确的是(       
A.B.C.D.以上选项都有可能
4 . 在素数研究中,华裔数学家张益唐证明了孪生素数猜想的一个弱化形式,孪生素数是指相差为2的素数对,例如3和5,11和13等.从不超过10的正奇数中随机抽取2个,则这2个奇数是孪生素数的概率为(       
A.B.C.D.
2024-03-13更新 | 348次组卷 | 5卷引用:四川省成都市教育科学研究院附属中学2023-2024学年高二下学期3月月考数学试题
5 . 中国古代著作《张丘建算经》中有这样一个问题:“今有马行转迟,次日减半疾,七日行七百里.”意思是说有一匹马行走的速度逐渐减慢,每天行走的里程是前一天的一半,七天一共行走了里路,则该马第五天走的里程数约为(       
A.B.C.D.
2024高二·全国·专题练习
6 . 意大利数学家列昂那多斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,,即,此数列在现代物理“准晶体结构”、化学等领域都有着广泛的应用.若此数列被2除后的余数构成一个新数列,则数列的前2024项的和为(     
A.1348B.675C.1349D.1350
2024-03-09更新 | 232次组卷 | 4卷引用:四川省达州外国语学校2023-2024学年高二下学期3月月考数学试题
7 . 纯电动汽车是以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,它使用存储在电池中的电来发动.因其对环境影响较小,逐渐成为当今世界的乘用车的发展方向.研究发现电池的容量随放电电流的大小而改变,1898年Peukert提出铅酸电池的容量、放电时间和放电电流之间关系的经验公式:,其中为与蓄电池结构有关的常数(称为Peukert常数),在电池容量不变的条件下,当放电电流为时,放电时间为;当放电电流为时,放电时间为,则该蓄电池的Peukert常数约为(参考数据:)(       
A.1.12B.1.13
C.1.14D.1.15
2024-03-01更新 | 1420次组卷 | 5卷引用:四川省德阳市第五中学2023-2024学年高二下学期4月月考数学试题
8 . 在《增删算法统宗》中有如下问题:“三百七十八里关,初行健步不为难:次日脚痛减一半,六朝才得到其关”,其意思是:“某人到某地需走的路程为378里,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天才到达目的地”,则此人(       
A.第二天走的路程占全程的
B.第三天走的路程为24里
C.第一天走的路程比第四天走的路程多144里
D.第五天和第六天共走路程18里
2024-02-12更新 | 323次组卷 | 4卷引用:四川省成都市成华区嘉祥外国语高级中学高2023-2024学年高二下学期3月月考数学试题
9 . 数学家也有许多美丽的错误,如法国数学家费马于1640年提出了以下猜想:是质数.直到1732年才被善于计算的大数学家欧拉算出,不是质数.现设,数列的前项和为,则使不等式成立的正整数的最大值为(       
A.11B.10C.9D.8
10 . 谢尔宾斯基三角形(Sierppinskitriangle)是一种分形,由波兰数学家谢尔宾斯基在1915年提出.先取一个实心正三角形,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形,即图中的白色三角形),然后在剩下的每个小三角形中又挖去一个“中心三角形”,用上面的方法可以无限操作下去.操作第1次得到图2,操作第2次得到图3.....,若继续这样操作下去后得到图2024,则从图2024中挖去的白色三角形个数是(       

A.B.
C.D.
共计 平均难度:一般