组卷网 > 知识点选题 > 计数原理与概率统计
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 264 道试题
1 . 请阅读:在等式)的两边对求导得
,化简后得等式.
请类比上述方法,试由等式).
(1)证明:(注:);
(2)求.
2017-10-20更新 | 533次组卷 | 1卷引用:江苏省南通中学2018届高三10月月考数学试题
2 . 已知,(其中).
(1)求
(2)试比较的大小,并用数学归纳法给出证明过程.
2017-05-17更新 | 1112次组卷 | 7卷引用:2012届江苏省阜宁中学高三第一学期第二次阶段考试数学
3 . 设f(n)=(a+b)n(n∈N*,n≥2),若f(n)的展开式中,存在某连续3项,其二项式系数依次成等差数列,则称f(n)具有性质P.
(1)求证:f(7)具有性质P;
(2)若存在n≤2016,使f(n)具有性质P,求n的最大值.
2016-12-04更新 | 1748次组卷 | 4卷引用:2016届江苏省南京市高三第三次学情调研测试数学试卷
4 . 如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.

(1)求3月1日到14日空气质量指数的中位数;
(2)求此人到达当日空气重度污染的概率;
(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)
2016-12-03更新 | 1495次组卷 | 3卷引用:2014年高考数学三轮冲刺模拟 概率与统计
5 . 中国天气网2016年3月4日晚六时通过手机发布的3月5日通州区天气预报的折线图(如图),其中上面的折线代表可能出现的从高气温,下面的折线代表可能出现的最低气温.

(Ⅰ)指出最高气温与最低气温的相关性;
(Ⅱ)估计在10:00时最高气温和最低气温的差;
(Ⅲ)比较最低气温与最高气温方差的大小(结论不要求证明).
解答题-证明题 | 适中(0.64) |
6 . (1)求证:
(2)求和:
2016-12-03更新 | 644次组卷 | 1卷引用:2015-2016学年湖北孝感高中高二上学期期中理科数学试卷
2011·北京丰台·一模
解答题-证明题 | 适中(0.65) |
名校
7 . 已知或1,,对于表示UV中相对应的元素不同的个数.
(Ⅰ)令,存在m,使得,写出m的值;
(Ⅱ)令,若,求证:
(Ⅲ)令,若,求所有之和.
2016-11-30更新 | 772次组卷 | 6卷引用:2011届北京市丰台区高三下学期统一练习数学理卷
8 . 某学校高一 、高二 、高三三个年级共有 名教师,为调查他们的备课时间情况,通过分层
抽样获得了名教师一周的备课时间 ,数据如下表(单位 :小时):

高一年级

高二年级

高三年级

(1)试估计该校高三年级的教师人数 ;
(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲 ,高二年级选出的人记为乙 ,求该周甲的备课时间不比乙的备课时间长的概率 ;
(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是(单位: 小时),这三个数据与表格中的数据构成的新样本的平均数记为,表格中的数据平均数记为 ,试判断的大小. (结论不要求证明)
9 . 数学运算中,常用符号来表示算式,如=,其中
(Ⅰ)若,…,成等差数列,且,公差,求证:
(Ⅱ)若,记,且不等式对于恒成立,求实数的取值范围.
2014·北京西城·二模
10 . 为了解某校学生的视力情况,现采用随机抽样的方式从该校的A,B两班中各抽5名学生进行视力检测.检测的数据如下:
A班5名学生的视力检测结果:4.3,5.1,4.6,4.1,4.9.
B班5名学生的视力检测结果:5.1,4.9,4.0,4.0,4.5.
(1)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好?
(2)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明)
(3) 现从A班的上述5名学生中随机选取3名学生,用X表示其中视力大于4.6的人数,求X的分布列和数学期望.
2016-12-03更新 | 348次组卷 | 3卷引用:2014届北京市西城区高三数学二模理科数学试卷
共计 平均难度:一般