组卷网 > 知识点选题 > 根据a、b、c求椭圆标准方程
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 92 道试题
1 . 在椭圆(双曲线)中,任意两条互相垂直的切线的交点都在同一个圆上,该圆的圆心是椭圆(双曲线)的中心,半径等于椭圆(双曲线)长半轴(实半轴)与短半轴(虚半轴)平方和(差)的算术平方根,则这个圆叫蒙日圆.已知椭圆的蒙日圆的面积为,该椭圆的上顶点和下顶点分别为,且,设过点的直线与椭圆交于两点(不与两点重合)且直线.
(1)证明:的交点在直线上;
(2)求直线围成的三角形面积的最小值.
2024-03-29更新 | 1808次组卷 | 4卷引用:湘豫名校联考2024年2月高三第一次模拟考试数学试题
2 . 已知双曲线经过椭圆的左、右焦点,设的离心率分别为,且
(1)求的方程;
(2)设上一点,且在第一象限内,若直线交于两点,直线交于两点,设的中点分别为,记直线的斜率为,当取最小值时,求点的坐标.
3 . 如图,用一个与圆柱底面成角的平面截圆柱,截面是一个椭圆. 已知圆柱的底面半径为1,建立适当的平面直角坐标系,可以得到椭圆的标准方程:. 的左、右焦点分别为,过作斜率为的直线,与交于两点.

(1)求的标准方程;
(2)若,直线的交点在直线上,求的值.
2024-02-18更新 | 165次组卷 | 1卷引用:河南省周口市项城市四校2024届高三上学期高考备考精英联赛调研数学试题

4 . 已知椭圆的焦点是椭圆的顶点,椭圆的焦点也是的顶点.


(1)求的方程;
(2)若三点均在上,且,直线的斜率均存在,证明:直线过定点(用表示).
2024-02-14更新 | 1086次组卷 | 3卷引用:山西省晋城市2024届高三一模数学试题
5 . 已知椭圆的焦点坐标,且过点.
(1)求椭圆的标准方程;
(2)直线与椭圆交于两点,且关于原点的对称点分别为,若是一个与无关的常数,求此时的常数及四边形面积的最大值.
2024-02-11更新 | 176次组卷 | 2卷引用:湖北省武汉市(武汉六中)部分重点中学2024届高三第二次联考数学试题变式题17-22
6 . 阅读材料:
在平面直角坐标系中,若点与定点(或的距离和它到定直线(或)的距离之比是常数,则,化简可得,设,则得到方程,所以点的轨迹是一个椭圆,这是从另一个角度给出了椭圆的定义.这里定点是椭圆的一个焦点,直线称为相应于焦点的准线;定点是椭圆的另一个焦点,直线称为相应于焦点的准线.
根据椭圆的这个定义,我们可以把到焦点的距离转化为到准线的距离.若点在椭圆上,是椭圆的右焦点,椭圆的离心率,则点到准线的距离为,所以,我们把这个公式称为椭圆的焦半径公式.
结合阅读材料回答下面的问题:
已知椭圆的右焦点为,点是该椭圆上第一象限的点,且轴,若直线是椭圆右准线方程,点到直线的距离为8.
(1)求点的坐标;
(2)若点也在椭圆上且的重心为,判断是否能构成等差数列?如果能,求出该等差数列的公差,如果不能,说明理由.
2024-01-24更新 | 358次组卷 | 3卷引用:专题22 新高考新题型第19题新定义压轴解答题归纳(9大核心考点)(讲义)
7 . 已知如图,点为椭圆的短轴的两个端点,且的坐标为,椭圆的离心率为.

(1)求椭圆的标准方程;
(2)若直线不经过椭圆的中心,且分别交椭圆与直线于不同的三点(点在线段上),直线分别交直线于点.求证:四边形为平行四边形.
2024-01-10更新 | 1491次组卷 | 3卷引用:辽宁省沈阳市2023-2024学年高三上学期教学质量监测(一)数学试题
8 . 已知记离心率为的椭圆C的中心在顶点,焦点在x轴上,短轴长为.
(1)求椭圆C的标准方程;
(2)设椭圆C的左、右顶点分别为A1A2,点Q在第一象限且QA2A1A2,直线QA1与椭圆C的另一个交点为P.设椭圆C的右焦点为F2,线段QA2的中点M到直线PF2的距离为d,求的值.
2024-01-02更新 | 184次组卷 | 1卷引用:安徽省马鞍山市第二中学2024届高三上学期12月阶段测试数学试题
23-24高二上·贵州贵阳·阶段练习
9 . 请阅读下列材料,并解决问题:

圆锥曲线的第二定义

二次曲线,即圆锥曲线,是由一平面截二次锥面得到的曲线,包括椭圆,抛物线,双曲线等.2000多年前,古希腊数学家最先开始研究二次曲线,并获得了大量的成果.古希腊数学家阿波罗尼斯采用平面切割圆锥的方法来研究二次曲线.阿波罗尼斯曾把椭圆叫“亏曲线”把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”,事实上,二次曲线由很多统一的定义、统一的二级结论等等.比如:平面内的动点到一个定点的距离和到定直线的距离的比是常数,则动点的轨迹就是圆锥曲线(这个圆锥曲线的第二定义).其中定点称为其焦点,定直线称为其准线(其中椭圆与双曲线的准线方程为,抛物线准线方程为),正常数称为其离心率.当时,轨迹为椭圆;当时,轨迹为抛物线;当时,轨迹为双曲线.
(1)已知平面内的动点到一个定点的距离和到定直线的距离的比是常数,则动点的轨迹方程为                 (直接写出结果,无需过程).
(2)在(1)所求的曲线中是否存在一点,使得该点到直线的距离最小?最小距离是多少?
10 . 圆称为椭圆的蒙日圆.已知椭圆的离心率为的蒙日圆方程为.
(1)求的方程;
(2)若的左焦点,过上的一点的切线的蒙日圆交于两点,过作直线交于两点,且,证明:是定值.
共计 平均难度:一般