组卷网 > 知识点选题 > 根据a、b、c求椭圆标准方程
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 54 道试题
2024·湖南常德·三模
1 . 已知O为坐标原点,椭圆C的上、下顶点为AB,椭圆上的点P位于第二象限,直线PAPBPO的斜率分别为,且.
(1)求椭圆C的标准方程;
(2)过原点O分别作直线PAPB的平行线与椭圆相交,得到四个交点,将这四个交点依次连接构成一个四边形,则此四边形的面积是否为定值?若为定值,请求出该定值;否则,请求出其取值范围.
2024-05-06更新 | 876次组卷 | 3卷引用:数学(九省新高考新结构卷03)
2 . 已知点.以坐标原点O为对称中心且焦点在y轴上的椭圆Ω的离心率为,过点A且不与坐标轴垂直的直线l与椭圆Ω交于CD两点,x轴恰平分,则椭圆Ω的标准方程为______.
2024-04-11更新 | 96次组卷 | 2卷引用:2024年普通高等学校招生全国统一考试数学猜题卷(五)
3 . 如图,已知椭圆的短轴长为,焦点与双曲线的焦点重合.点,斜率为的直线与椭圆交于两点.
   
(1)求常数的取值范围,并求椭圆的方程.
(2)(本题可以使用解析几何的方法,也可以利用下面材料所给的结论进行解答)
极点与极线是法国数学家吉拉德·迪沙格于1639年在射影几何学的奠基之作《圆锥曲线论稿》中正式阐述的.对于椭圆,极点(不是原点)对应的极线为,且若极点轴上,则过点作椭圆的割线交于点,则对于上任意一点,均有(当斜率均存在时).已知点是直线上的一点,且点的横坐标为2.连接轴于点.连接分别交椭圆两点.
①设直线分别交轴于点、点,证明:点的中点;
②证明直线:恒过定点,并求出定点的坐标.
2024-04-01更新 | 908次组卷 | 1卷引用:2024届广东省(佛山市第一中学、广州市第六中学、汕头市金山中学、)高三六校2月联考数学试卷
4 . 在椭圆(双曲线)中,任意两条互相垂直的切线的交点都在同一个圆上,该圆的圆心是椭圆(双曲线)的中心,半径等于椭圆(双曲线)长半轴(实半轴)与短半轴(虚半轴)平方和(差)的算术平方根,则这个圆叫蒙日圆.已知椭圆的蒙日圆的面积为,该椭圆的上顶点和下顶点分别为,且,设过点的直线与椭圆交于两点(不与两点重合)且直线.
(1)证明:的交点在直线上;
(2)求直线围成的三角形面积的最小值.
2024-03-29更新 | 1805次组卷 | 4卷引用:湘豫名校联考2024年2月高三第一次模拟考试数学试题
智能选题,一键自动生成优质试卷~

5 . 已知椭圆的焦点是椭圆的顶点,椭圆的焦点也是的顶点.


(1)求的方程;
(2)若三点均在上,且,直线的斜率均存在,证明:直线过定点(用表示).
2024-02-14更新 | 1082次组卷 | 3卷引用:山西省晋城市2024届高三一模数学试题
6 . 已知椭圆的焦点坐标,且过点.
(1)求椭圆的标准方程;
(2)直线与椭圆交于两点,且关于原点的对称点分别为,若是一个与无关的常数,求此时的常数及四边形面积的最大值.
2024-02-11更新 | 176次组卷 | 2卷引用:湖北省武汉市(武汉六中)部分重点中学2024届高三第二次联考数学试题变式题17-22
7 . 阅读材料:
在平面直角坐标系中,若点与定点(或的距离和它到定直线(或)的距离之比是常数,则,化简可得,设,则得到方程,所以点的轨迹是一个椭圆,这是从另一个角度给出了椭圆的定义.这里定点是椭圆的一个焦点,直线称为相应于焦点的准线;定点是椭圆的另一个焦点,直线称为相应于焦点的准线.
根据椭圆的这个定义,我们可以把到焦点的距离转化为到准线的距离.若点在椭圆上,是椭圆的右焦点,椭圆的离心率,则点到准线的距离为,所以,我们把这个公式称为椭圆的焦半径公式.
结合阅读材料回答下面的问题:
已知椭圆的右焦点为,点是该椭圆上第一象限的点,且轴,若直线是椭圆右准线方程,点到直线的距离为8.
(1)求点的坐标;
(2)若点也在椭圆上且的重心为,判断是否能构成等差数列?如果能,求出该等差数列的公差,如果不能,说明理由.
2024-01-24更新 | 358次组卷 | 3卷引用:专题22 新高考新题型第19题新定义压轴解答题归纳(9大核心考点)(讲义)
23-24高二上·贵州贵阳·阶段练习
8 . 请阅读下列材料,并解决问题:

圆锥曲线的第二定义

二次曲线,即圆锥曲线,是由一平面截二次锥面得到的曲线,包括椭圆,抛物线,双曲线等.2000多年前,古希腊数学家最先开始研究二次曲线,并获得了大量的成果.古希腊数学家阿波罗尼斯采用平面切割圆锥的方法来研究二次曲线.阿波罗尼斯曾把椭圆叫“亏曲线”把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”,事实上,二次曲线由很多统一的定义、统一的二级结论等等.比如:平面内的动点到一个定点的距离和到定直线的距离的比是常数,则动点的轨迹就是圆锥曲线(这个圆锥曲线的第二定义).其中定点称为其焦点,定直线称为其准线(其中椭圆与双曲线的准线方程为,抛物线准线方程为),正常数称为其离心率.当时,轨迹为椭圆;当时,轨迹为抛物线;当时,轨迹为双曲线.
(1)已知平面内的动点到一个定点的距离和到定直线的距离的比是常数,则动点的轨迹方程为                 (直接写出结果,无需过程).
(2)在(1)所求的曲线中是否存在一点,使得该点到直线的距离最小?最小距离是多少?
9 . 已知双曲线是双曲线上一点.
(1)若椭圆以双曲线的顶点为焦点,长轴长为,求椭圆的标准方程;
(2)设是第一象限中双曲线渐近线上一点,是双曲线上一点,且,求的面积为坐标原点);
(3)当直线(常数)与双曲线的左支交于两点时,分别记直线的斜率为,求证:为定值.
10 . 已知点PQ是圆上的两个动点,若直线OPOQ的斜率都存在且满足
(1)当时,求PQ的中点M的轨迹方程;
(2)当时,椭圆与动直线PQ恒相切,求椭圆C的标准方程.
2023-11-20更新 | 355次组卷 | 1卷引用:2024年普通高等学校招生全国统一考试数学领航卷(二)
共计 平均难度:一般