组卷网 > 知识点选题 > 写出简单离散型随机变量分布列
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 43 道试题
1 . 已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用80元,设表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求的分布列和均值(数学期望).
2021-08-24更新 | 171次组卷 | 1卷引用:江苏省连云港市新海高级中学2020-2021学年高二下学期6月月考数学试题
2 . 某单位在“全民健身日”举行了一场趣味运动会,其中一个项目为投篮游戏.游戏的规则如下:每局游戏需投篮3次,若投中的次数多于未投中的次数,该局得3分,否则得1分.已知甲投篮的命中率为,且每次投篮的结果相互独立.
(1)求甲在一局游戏中投篮命中次数X的分布列与期望;
(2)若参与者连续玩局投篮游戏获得的分数的平均值大于2,即可获得一份大奖.现有两种选择,要想获奖概率最大,甲应该如何选择?请说明理由.
3 . 2020年以来,新冠病毒疫情肆虐全球我国在抗击新冠肺炎疫情中取得了世界瞩目的成绩,为其他国家提供了大量的医疗经验和防控措施.根据疫情防控需要现在要对某地区的份样本进行核酸检验,检测过程中每个样本取到的可能性均等,有以下两种检验方式:①逐份检验,则需要检验次;②混合检验,将其中)份样本分别取样混合在一起检验,若检验结果为阴性,这份的样本全为阴性,因而这份样本只要检验一次就够了,如果检验结果为阳性,为了明确这份样本究竟哪几份为阳性,就要对这份样本再逐份检验,此时这份样本的检验次数总共为次.假设在接受检验的样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为.
(1)假设有10份样本,其中只有2份样本为阳性,现采用逐份检验方式对每一份样本进行检测,求经过3次检验就能把阳性样本全部检验出来的概率;
(2)现取其中)份样本,每份样本是阳性结果的概率.记采用混合检验方式,样本需要检验的总次数为,求的概率分布列及数学期望;并说明采用混合检验方式可以使得样本需要检验的总次数的期望比逐份检验的总次数期望少的的最大值是多少?
(参考数据:.)
2021-05-29更新 | 493次组卷 | 5卷引用:江苏省连云港市2021届高三下学期3.5模数学试题
4 . 某奶茶店推出一款新品奶茶,每杯成本4元,售价6元.如果当天卖不完,剩下的奶茶只能倒掉.奶茶店记录了60天这款新品奶茶的日需求量,整理得下表:
日需求量杯数20253035404550
天数55101510105
以60天记录的各需求量的频率作为各需求量发生的概率.
(1)从这60天中任取2天,求这2天的日需求量至少有一天为35的概率;
(2)①若奶茶店一天准备了35杯这款新品奶茶,用表示当天销售这款新品奶茶的利润(单位:元),求的分布列和数学期望;
②假设奶茶店每天准备的这款新品奶茶倍数都是5的倍数,有顾客建议店主每天准备40杯这款新品奶茶,你认为店主应该接受这个建议吗?请说明理由.
5 . 为加强进口冷链食品监管,某省于2020年底在全省建立进口冷链食品集中监管专仓制度,在口岸、目的地市或县(区、市)等进口冷链食品第一入境点,设立进口冷链食品集中监管专仓,集中开展核酸检测和预防性全面消毒工作,为了进一步确定某批进口冷冻食品是否感染病毒,在入关检疫时需要对其采样进行化验,若结果呈阳性,则有该病毒;若结果呈阴性,则没有该病毒,对于,()份样本,有以下两种检验方式:一是逐份检验,则需检验次:二是混合检验,将份样本分别取样混合在一起,若检验结果为阴性,那么这份全为阴性,因而检验一次就够了;如果检验结果为阳性,为了明确这份究竟哪些为阳性,就需要对它们再次取样逐份检验,则份检验的次数共为次,若每份样本没有该病毒的概率为),而且样本之间是否有该病毒是相互独立的.
(1)若,求2份样本混合的结果为阳性的概率;
(2)若取得4份样本,考虑以下两种检验方案:方案一:采用混合检验;方案二:平均分成两组,每组2份样本采用混合检验.若检验次数的期望值越小,则方案越“优”,试问方案一、二哪个更“优”?请说明理由.
2021-03-21更新 | 1683次组卷 | 6卷引用:江苏省连云港市赣榆区2020-2021学年高二下学期期中数学试题
6 . 今年年初,我市某医院计划从3名医生、5名护士中随机选派4人参加湖北新冠肺炎疫情狙击战.
(1)求选派的4人中至少有2名医生的概率;
(2)设选派的4人中医生人数为X,求X的概率分布和数学期望.
7 . 厂家在产品出厂前,需对产品做检验,第一次检测厂家的每件产品合格的概率为,如果合格,则可以出厂;如果不合格,则进行技术处理,处理后进行第二次检测.每件产品的合格率为,如果合格,则可以出厂,不合格则当废品回收.
求某件产品能出厂的概率;
若该产品的生产成本为元/件,出厂价格为元/件,每次检测费为元/件,技术处理每次元/件,回收获利元/件.假如每件产品是否合格相互独立,记为任意一件产品所获得的利润,求随机变量的分布列与数学期望.
8 . 棋盘上标有第0,1,2,…,100站,棋子开始时位于第0站,棋手抛掷均匀硬币走跳棋游戏.若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第99站或第100站时,游戏结束.设棋子跳到第n站的概率为Pn
(1)当游戏开始时若抛掷均匀硬币3次后求棋手所走站数之和X的分布列与数学期望;
(2)证明:
(3)求P99P100的值.
2020-08-28更新 | 1189次组卷 | 9卷引用:2020届江苏省连云港市六所四星高中(海州高中、赣榆高中、海头中学、东海高中、新海高中、灌云高中)高三下学期模拟考试数学试题
9 . 羽毛球比赛中采用每球得分制,即每回合中胜方得1分,负方得0分,每回合由上回合的胜方发球.设在甲、乙的比赛中,每回合发球,发球方得1分的概率为0.6,各回合发球的胜负结果相互独立.若在一局比赛中,甲先发球.
(1)求比赛进行3个回合后,甲与乙的比分为的概率;
(2)表示3个回合后乙的得分,求的分布列与数学期望.
10 . 某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高

气温

[10,

15)

[15,

20)

[20,

25)

[25,

30)

[30,

35)

[35,

40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列.
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?
2017-08-07更新 | 6690次组卷 | 33卷引用:江苏省南京师范大学灌云附属中学、灌南县第二中学2023-2024学年高三上学期10月阶段性联考数学试题
共计 平均难度:一般