组卷网 > 章节选题 > 选修1-1
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 34 道试题
1 . 设函数
(1)当时,求函数在点处的切线方程;
(2)当时,设,且轴,求两点间的最短距离;
(3)若时,函数的图象恒在的图象上方,求实数的取值范围.
2024-04-24更新 | 133次组卷 | 2卷引用:重庆市名校联盟2023-2024学年高二下学期4月期中联考数学试题
3 . 已知椭圆的焦点分别为,过左焦点的直线与椭圆交于MN两点,的周长为.
(1)求椭圆E的离心率;
(2)直线与椭圆有两个不同的交点AB,直线x轴的交点为D,若AB都在x轴上方且点A在线段上,O为坐标原点,面积分别为,记,当满足条件的实数变化时,的取值范围是,求椭圆E的方程.
2023-11-24更新 | 376次组卷 | 1卷引用:重庆市巴蜀中学2023-2024学年高二上学期期中考试数学试卷
4 . 已知双曲线上的一点到两条渐近线的距离之积为2且双曲线C的离心率为.
(1)求双曲线C的方程;
(2)已知M是直线上一点,直线交双曲线CAA在第一象限),B两点,O为坐标原点,过点M作直线的平行线ll与直线交于点P,与x轴交于点Q,若P为线段的中点,求实数t的值.
2023-11-14更新 | 894次组卷 | 3卷引用:重庆市南岸区四川外语学院重庆第二外国语学校2024届高三上学期期中数学试题
5 . 已知函数
(1)若函数是减函数,求的取值范围;
(2)若有两个零点,且,证明:
2023-11-09更新 | 1358次组卷 | 5卷引用:重庆市渝中区2024届高三上学期期中数学试题
6 . 已知函数.
(1)若,证明:当时,
(2)当时,,求的取值范围.
2023-10-31更新 | 596次组卷 | 5卷引用:重庆市名校联盟2024届高三上学期期中数学试题
7 . 已知函数有两个不同的极值点.
(1)求实数的取值范围;
(2)已知,且,求的取值范围.
2023-10-29更新 | 635次组卷 | 3卷引用:重庆市第八中学校2024届高三上学期10月期中数学试题
8 . 已知函数
(1)若,证明:上恒成立;
(2)若方程有两个实数根,证明:
2023-10-29更新 | 587次组卷 | 3卷引用:重庆市南岸区四川外语学院重庆第二外国语学校2024届高三上学期期中数学试题
10 . 已知椭圆的左右顶点分别为AB,椭圆E与抛物线的准线相切,椭圆的左焦点FAB两点的距离之积为3.
(1)求椭圆E的方程;
(2)过点作斜率为k的直线与椭圆E交于不同的两点PQ,直线BPBQ分别与y轴交于点MN,则,求直线PQ的方程.
共计 平均难度:一般