组卷网 > 章节选题 > 选修2-1
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 67 道试题
1 . 王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其诗作《从军行》中的诗句“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还”传诵至今.由此推断,其中最后一句“返回家乡”是“攻破楼兰”的(       
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
2022-11-14更新 | 3008次组卷 | 92卷引用:湖南省永州市2020-2021学年高一上学期期末数学试题
2 . 在九章算术中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑中,平面BCD,且MAD的中点,则异面直线BMCD夹角的余弦值为(    )
A.B.C.D.
2022-10-27更新 | 2318次组卷 | 33卷引用:第一章 空间向量与立体几何单元检测(知识达标卷)-【一堂好课】2021-2022学年高二数学上学期同步精品课堂(人教A版2019选择性必修第一册)
多选题 | 较易(0.85) |
名校
3 . 设计如图所示的四个电路图,:“开关闭合”,:“灯泡亮”,则的充要条件的电路图是(       
A.B.
C.D.
2022-08-27更新 | 1737次组卷 | 30卷引用:专题01 与集合、常用逻辑用语相关的情景化试题 - 2021-2022学年高一数学新教材情境化新题(人教A版2019必修第一册)
4 . 明朝的一个葡萄纹椭圆盘如图(1)所示,清朝的一个青花山水楼阁纹饰椭圆盘如图(2)所示,北宋的一个汝窑椭圆盘如图(3)所示,这三个椭圆盘的外轮廓均为椭圆.已知图(1)、(2)、(3)中椭圆的长轴长与短轴长的比值分别,设图(1)、(2)、(3)中椭圆的离心率分别为,则(       

A.B.
C.D.
2021-05-09更新 | 2864次组卷 | 30卷引用:云南、贵州、四川、广西四省2021届高三5月模拟联考数学(理)试题
5 . 《九章算术》是古代中国乃至东方的第一部自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形为矩形,,若都是正三角形,且,则异面直线所成角的大小为(       

A.B.C.D.
6 . 阿基米德是古希腊著名的数学家、物理学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积,已知在平面直角坐标系中,椭圆的面积为,两焦点与短轴的一个端点构成等边三角形,则椭圆的标准方程是(       
A.B.C.D.
7 . 著名的天文学家、数学家约翰尼斯·开普勒(Johannes   Kepler)发现了行星运动三大定律,其中开普勒第一定律又称为轨道定律,即所有行星绕太阳运动的轨道都是椭圆,且太阳处在椭圆的一个焦点上.记地球绕太阳运动的轨道为椭圆C,在地球绕太阳运动的过程中,若地球与太阳的最远距离与最近距离之比为,则C的离心率为(       
A.B.C.D.
2021-09-17更新 | 2095次组卷 | 12卷引用:广东省深圳市罗湖区2022届高三上学期第一次质量检测数学试题
8 . 历史上第一个研究圆锥曲线的是梅纳库莫斯(公元前375年—325年),大约100年后,阿波罗尼奥斯更详尽、系统地研究了圆锥曲线,并且他还进一步研究了这些圆锥曲线的光学性质,比如:从抛物线的焦点发出的光线或声波在经过抛物线反射后,反射光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的光线,经抛物线反射后,反射光线经过抛物线的焦点.设抛物线,一束平行于抛物线对称轴的光线经过,被抛物线反射后,又射到抛物线上的点,则点的坐标为(       
A.B.C.D.
2021-04-10更新 | 1904次组卷 | 4卷引用:东北三省四城市联考暨沈阳市2021届高三质量监测(二)数学试题
9 . 如图,正方形内的图形来自中国古代的太极图.勤劳而充满智慧的我国古代劳动人民曾用太极图解释宇宙现象.太极图由正方形的内切圆(简称大圆)和两个互相外切且半径相等的圆(简称小圆)的半圆弧组成,两个小圆与大圆均内切.若正方形的边长为8,则以两个小圆的圆心(图中两个黑白点视为小圆的圆心)为焦点,正方形对角线所在直线为渐近线的双曲线实轴长是_______.

2021-01-14更新 | 1770次组卷 | 11卷引用:2021年1月浙江省普通高中学业水平考试数学试题
10 . 十七世纪法国数学家费马在《平面与立体轨迹引论》中证明,方程表示椭圆,费马所依据的是椭圆的重要性质:若从椭圆上任意一点P(异于AB两点)向长轴AB引垂线,垂足为Q,记.下列说法正确的是(       
A.M的值与Р点在椭圆上的位置有关B.M的值与Р点在椭圆上的位置无关
C.M的值越大,椭圆的离心率越大D.M的值越大,椭圆的离心率越小
2021-10-18更新 | 1721次组卷 | 9卷引用:辽宁省沈阳市沈阳市第一二〇中学2021-2022学年高二上学期第二次质量检测数学试题
共计 平均难度:一般