组卷网 > 章节选题 > 选修2-3
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 17 道试题
填空题-单空题 | 困难(0.15) |
名校
1 . 若是一个集合,是一个以的某些子集为元素的集合,且满足:①属于,空集属于;②中任意多个元素的并集属于;③中任意多个元素的交集属于,则称是集合上的一个拓扑.已知函数,其中[x]表示不大于的最大整数,当时,函数值域为集合,则集合上的含有4个元素的拓扑的个数为______
2024-04-29更新 | 484次组卷 | 3卷引用:第一章 排列组合与二项式定理 专题三 组合 微点2 组合综合训练【培优版】
2 . 已知为正整数,对于给定的函数,定义一个次多项式如下:
(1)当时,求;
(2)当时,求;
(3)当时,求.
2023-06-08更新 | 606次组卷 | 3卷引用:第五章 概率统计创新问题 专题七 概率统计中的新定义问题 微点1 概率统计中的新定义问题(一)【培优版】
2023·江西·二模
3 . 李华在研究化学反应时,把反应抽象为小球之间的碰撞,而碰撞又分为有效碰撞和无效碰撞,李华有3个小球和3个小球,当发生有效碰撞时,上的计数器分别增加2计数和1计数,球两两发生有效碰撞的概率均为,现在李华取三个球让他们之间两两碰撞,结束后从中随机取一个球,发现其上计数为2,则李华一开始取出的三个球里,小球个数的期望是(       )个
A.1.2B.1.6C.1.8D.2
2023-04-10更新 | 1849次组卷 | 6卷引用:模块八 专题5 以概率与统计为背景的压轴小题
4 . 小林同学喜欢吃4种坚果:核桃腰果杏仁榛子,他有5种颜色的“每日坚果”袋.每个袋子中至少装1种坚果,至多装4种坚果.小林同学希望五个袋子中所装坚果种类各不相同,且每一种坚果在袋子中出现的总次数均为偶数,那么不同的方案数为(       
A.20160B.20220C.20280D.20340
2022-04-07更新 | 4552次组卷 | 12卷引用:2022年高考考前20天终极冲刺攻略(三)【数学】(新高考地区专用)(6月1日)
填空题-单空题 | 困难(0.15) |
名校
解题方法
5 . “迎冬奥,跨新年,向未来”,水球中学将开展自由式滑雪接力赛.自由式滑雪接力赛设有空中技巧、雪上技巧和雪上芭蕾三个项目,参赛选手每人展示其中一个项目.现安排两名男生和两名女生组队参赛,若要求相邻出场选手展示不同项目,女生中至少一人展示雪上芭蕾项目,且三个项目均有所展示,则共有___种出场顺序与项目展示方案.(用数字作答)
2022-02-15更新 | 1782次组卷 | 5卷引用:专题10-1 排列组合20种模型方法归类-3
6 . 某校高二年级共有10个班级,5位教学教师,每位教师教两个班级,其中姜老师一定教1班,张老师一定教3班,王老师一定教8班,秋老师至少教9班和10班中的一个班,曲老师不教2班和6班,王老师不教5班,则不同的排课方法种数______
2021-03-22更新 | 3492次组卷 | 8卷引用:专题10-1 排列组合20种模型方法归类-4
7 . 冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征()和严重急性呼吸综合征()等较严重疾病.而今年出现在湖北武汉的新型冠状病毒()是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有n)份血液样本,有以下两种检验方式:方式一:逐份检验,则需要检验n次.方式二:混合检验,将其中k)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p).现取其中k)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.
(1)若,试求p关于k的函数关系式
(2)若p与干扰素计量相关,其中)是不同的正实数,满足)都有成立.
i)求证:数列等比数列;
ii)当时,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数的期望值更少,求k的最大值
2020-08-28更新 | 2227次组卷 | 7卷引用:专题7.1 概率中的应用问题 -玩转压轴题,进军满分之2021高考数学选择题填空题
8 . 在孟德尔遗传理论中,称遗传性状依赖的特定携带者为遗传因子,遗传因子总是成对出现,例如,豌豆携带这样一对遗传因子:使之开红花,使之开白花,两个因子的相互组合可以构成三种不同的遗传性状:为开红花,一样不加区分为开粉色花,为开白色花,生物在繁衍后代的过程中,后代的每一对遗传因子都包含一个父本的遗传因子和一个母本的遗传因子,而因为生殖细胞是由分裂过程产生的,每一个上一代的遗传因子以的概率传给下一代,而且各代的遗传过程都是相互独立的,可以把第代的遗传设想为第次试验的结果,每一次试验就如同抛一枚均匀的硬币,比如对具有性状的父本来说,如果抛出正面就选择因子,如果抛出反面就选择因子,概率都是,对母本也一样,父本、母本各自随机选择得到的遗传因子再配对形成子代的遗传性状,假设三种遗传性状(或),在父本和母本中以同样的比例出现,则在随机杂交试验中,遗传因子被选中的概率是,遗传因子被选中的概率是,称分别为父本和母本中遗传因子的频率,实际上是父本和母本中两个遗传因子的个数之比,基于以上常识回答以下问题:
(1)如果植物的上代父本、母本的遗传性状都是,后代遗传性状为(或),的概率分别是多少?
(2)对某一植物,经过实验观察发现遗传性状具有重大缺陷,可人工剔除,从而使得父本和母本中仅有遗传性状为(或)的个体,在进行第一代杂交实验时,假设遗传因子被选中的概率为被选中的概率为,其中为定值且,求杂交所得子代的三种遗传性状(或),所占的比例
(3)继续对(2)中的植物进行杂交实验,每次杂交前都需要剔除的个体.假设得到的第代总体中3种遗传性状(或),所占的比例分别为:,设第代遗传因子的频率分别为,已知有以下公式
(ⅰ)证明是等差数列;
(ⅱ)求的通项公式,如果这种剔除某种遗传性状的随机杂交实验长期进行下去,会有什么现象发生?
2020-08-09更新 | 3253次组卷 | 8卷引用:专题10-2 概率压轴大题(理)-2022年高考数学毕业班二轮热点题型归纳与变式演练(全国通用)
9 . 口袋中有大小、形状、质地相同的两个白球和三个黑球.现有一抽奖游戏规则如下:抽奖者每次有放回的从口袋中随机取出一个球,最多取球2n+1(n)次.若取出白球的累计次数达到n+1时,则终止取球且获奖,其它情况均不获奖.记获奖概率为
(1)求
(2)证明:
2020-06-05更新 | 1961次组卷 | 5卷引用:专题10-2 概率压轴大题(理)-2022年高考数学毕业班二轮热点题型归纳与变式演练(全国通用)
10 . (1)求证:
(2)求证:.
2020-05-20更新 | 674次组卷 | 3卷引用:预测11 计数原理-【临门一脚】2020年高考数学三轮冲刺过关(江苏专用)
共计 平均难度:一般