组卷网 > 章节选题 > 必修1
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 5022 道试题
解答题-应用题 | 较难(0.4) |
名校
解题方法
1 . 在2023年杭州亚运会最后两个竞技项目男女马拉松比赛中,中国选手何杰以2小时13分02秒夺得男子组冠军,这是中国队亚运史上首枚男子马拉松金牌.人类长跑运动一般分为两个阶段,第一阶段为前1小时的稳定阶段,第二阶段为疲劳阶段.小明想通过数学建模的方式研究运动员的运动时长与其剩余体力的关系.通过查找资料,小明得知:一位60kg的复健马拉松运动员进行4小时长跑训练,稳定阶段平均速度为30km/h,该阶段每千克体重消耗体力表示该阶段所用时间),疲劳阶段由于体力消耗过大,在原有基础上随时间变大,速度降低,比例系数为.同时,疲劳阶段速度降低,体力得到一定恢复,该阶段每千克体重消耗体力,(表示该阶段所用时间).同时,根据比赛现场的环境,其他运动员的平均配速,以及比赛策略等各方面因素,产生上下5%~10%的速度浮动,其对于运动员的体力影响也更为复杂.已知该运动员初始体力为,请帮助小明补充完善数学建模的过程:
(1)对于数学建模,我们需要给出合理假设.
假设一:假设该运动员稳定阶段作速度为的匀速运动;疲劳阶段做的减速运动
假设二:_________________
(2)提出问题一:该运动员剩余体力Q关于时间t有何关系?请写出函数
提出问题二:该运动员在4小时内何时体力达到最低值,最低值为多少?
(3)总结运用:请根据以上计算结论,给出一定的实际建议.
7日内更新 | 18次组卷 | 1卷引用:上海市市西中学2023-2024学年高一下学期期末复习数学试卷
2 . 如果对于函数的定义域内任意的,都有成立,那么就称函数是定义域上的“平缓函数”.
(1)判断函数是否是“平缓函数”;
(2)若函数是闭区间上的“平缓函数”,且,证明:对于任意的,都有成立.
7日内更新 | 72次组卷 | 1卷引用:贵州省贵阳市第一中学2023-2024学年高一下学期教学质量监测(四)数学试题
3 . 已知是定义在上的偶函数,当,且时,恒成立,,则满足的取值范围为______
7日内更新 | 99次组卷 | 1卷引用:贵州省贵阳市第一中学2023-2024学年高一下学期教学质量监测(四)数学试题
4 . 已知函数满足以下条件:

.
(1)求的值.
(2)判断函数的奇偶性,并说明理由.
(3)若,试判断函数的周期性,并说明理由.
7日内更新 | 44次组卷 | 1卷引用:北京市八一学校2023-2024学年高一下学期6月月考数学试题
5 . 已知函数.
(1)若函数为奇函数,求实数的值;
(2)求函数的值域;
(3)求函数的单调区间;
(4)若关于的不等式的解集,求实数的取值范围.
7日内更新 | 61次组卷 | 1卷引用:贵州省遵义市第四中学“组团发展”2023-2024学年高一下学期联考联评(6月)数学试题
6 . 定义为不超过的最大整数,如.已知函数满足:对任意..当时,,则函数上的零点个数为(       
A.6B.8C.9D.10
7 . 设集合,()且A中任意两数之和不能被5整除,则n的最大值为____________.
2024-06-13更新 | 110次组卷 | 1卷引用:湖南省长沙市明德中学2023-2024学年高一下学期5月阶段考试数学试卷
8 . 已知为实数集的一个非空子集,称是一个加法群,如果连同其上的加法运算满足如下四条性质:


,使得
,使得
例如是一个无限元加法群,是一个单元素加法群.
(1)令,分别判断是否为加法群,并说明理由;
(2)已知非空集合,并且,有,求证:是一个加法群;
(3)已知非空集合,并且,有,求证:存在,使得
2024-06-11更新 | 92次组卷 | 1卷引用:北京市顺义牛栏山第一中学2023-2024学年高一下学期期中考试数学试卷
9 . 定义1:对于一个数集,定义一种运算,对任意都有,则称集合关于运算是封闭的(例如:自然数集对于加法运算是封闭的).
定义2:对于一个数集,若存在一个元素,使得任意,满足,则称为集合中的零元,若存在一个元素,使得任意,满足,则称为集合中的单位元(例如:0和1分别为自然数集中的零元和单位元).
定义3:对于一个数集,如果满足下列关系:
①有零元和单位元;
②关于加、减、乘、除(除数不为0)四种运算都是封闭的;
③对于乘法和加法都满足交换律和结合律,且满足乘法对加法的分配律,则称这个数集是一个数域.
(1)指出常用数集中,那些数集可以构成数域(不需要证明);
(2)已知集合,证明:集合关于乘法运算是封闭的;
(3)已知集合,证明:集合是一个数域.
2024-06-11更新 | 226次组卷 | 3卷引用:安徽省宿州市省、市示范高中2023-2024学年高一下学期4月期中考试数学试题
10 . 设,若非空集合同时满足以下4个条件,则称是“无和划分”:


,且中的最小元素大于中的最小元素;
,必有.
(1)若,判断是否是“无和划分”,并说明理由.
(2)已知是“无和划分”().
①证明:对于任意,都有
②若存在,使得,记,证明:中的所有奇数都属于.
共计 平均难度:一般