组卷网 > 知识点选题 > 离散型随机变量及其分布列
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 343 道试题
1 . 轻食是餐饮的一种形态、轻的不仅仅是食材分量,更是食材烹饪方式简约,保留食材本来的营养和味道,近年来随着消费者健康意识的提升及美颜经济的火热,轻食行业迎来快速发展.某传媒公司为了获得轻食行业消费者行为数据,对中国轻食消费者进行抽样调查.统计其中400名中国轻食消费者(表中4个年龄段的人数各100人)食用轻食的频数与年龄得到如下的频数分布表.

使用频数

偶尔1次

30

15

5

10

每周1~3次

40

40

30

50

每周4~6次

25

40

45

30

每天1次及以上

5

5

20

10

(1)若把年龄在的消费者称为青少年,年龄在的消费者称为中老年,每周食用轻食的频数不超过3次的称为食用轻食频率低,不低于4次的称为食用轻食频率高,根据所给数据,完成列联表,并根据列联表判断是否有99%的把握认为食用轻食频率的高低与年龄有关;
(2)从每天食用轻食1次及以上的样本消费者中按照表中年龄段采用分层抽样,从中抽取8人,再从这8人中随机抽取3人,记这3人中年龄在的人数分别为.求的分布列与期望;
(3)已知小李每天早餐、晚餐都食用轻食,且早餐与晚餐在低卡甜品、全麦夹心吐司、果蔬汁3种轻食中选择一种,已知小李在某天早餐随机选择一种轻食,如果早餐选择低卡甜品、全麦夹心吐司、果蔬汁,则晚餐选择低卡甜品的概率分别为,求小李晚餐选择低卡甜品的概率.
参考公式:.
附:

0.10

0.05

0.01

0.005

0.001

2.706

3.841

6.635

7.879

10.828

2024-02-29更新 | 735次组卷 | 12卷引用:山东省泰安市泰山外国语学校2024届高三上学期期末数学试题
2 . 为了开展“成功源自习惯,习惯来自日常”主题班会活动,引导学生养成良好的行为习惯,提高学习积极性和主动性,在全校学生中随机调查了名学生的某年度综合评价学习成绩,研究学习成绩是否与行为习惯有关.已知在全部人中随机抽取一人,抽到行为习惯良好的概率为,现按“行为习惯良好”和“行为习惯不够良好”分为两组,再将两组学生的学习成绩分成五组:,绘制得到如图所示的频率分布直方图.

(1)若规定学习成绩不低于分为“学习标兵”,请你根据已知条件填写下列列联表,并判断是否有的把握认为“学习标兵与行为习惯是否良好有关”;

行为习惯良好

行为习惯不够良好

总计

学习标兵

非学习标兵

总计

(2)现从样本中学习成绩低于分的学生中随机抽取人,记抽到的学生中“行为习惯不够良好”的人数为,求的分布列和期望.
参考公式与数据:,其中.

2024-02-28更新 | 586次组卷 | 6卷引用:山东省德州市2024届高三下学期开学考试数学试题
3 . 某市为繁荣地方经济,大力实行人才引进政策,为了解政策的效果,统计了2018-2023年人才引进的数量(单位:万人),并根据统计数据绘制了如图所示的散点图(表示年份代码,年份代码1-6分别代表2018-2023年).

(1)根据散点图判断均为常数)哪一个适合作为关于的回归方程类型;(给出结论即可,不必说明理由)
(2)根据(1)的结果及表中的数据,求出关于的回归方程,并预测该市2025年引进人才的数量;
(3)从这6年中随机抽取4年,记引进人才数量超过4万人的年数为,求的分布列和数学期望.
参考数据:

5.15

1.55

17.5

20.95

3.85

其中
参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:
2024-02-23更新 | 896次组卷 | 6卷引用:山东省齐鲁名校联盟2024届高三下学期开学质量检测数学试题
4 . 某市号召市民尽量减少开车出行,以绿色低碳的出行方式支持节能减排.原来天天开车上班的王先生积极响应政府号召,准备每天在骑自行车和开车两种出行方式中随机选择一种方式出行.从即日起出行方式选择规则如下:第一天选择骑自行车方式上班,随后每天用“一次性抛掷4枚均匀硬币”的方法确定出行方式,若得到的正面朝上的枚数小于3,则该天出行方式与前一天相同,否则选择另一种出行方式.
(1)设表示事件“在第天,王先生上班选择的是骑自行车出行方式”的概率.
①求
②用表示
(2)依据值,阐述说明王先生的这种随机选择出行方式是否积极响应市政府的号召.
2024-01-20更新 | 658次组卷 | 4卷引用:山东省德州市2024届高三上学期期末数学试题
5 . 为检验预防某种疾病的两种疫苗的免疫效果,随机抽取接种疫苗的志愿者各100名,化验其血液中某项医学指标(该医学指标范围为,统计如下:
该项医学指标
接种疫苗人数1050
接种疫苗人数3040
个别数据模糊不清,用含字母的代数式表示.
(1)为检验该项医学指标在内的是否需要接种加强针,先从医学指标在的志愿者中,按接种疫苗分层抽取8人,再次抽血化验进行判断.从这8人中随机抽取4人调研医学指标低的原因,记这4人中接种疫苗的人数为,求的分布列与数学期望;
(2)根据(1)化验研判结果,医学认为该项医学指标低于50,产生抗体较弱,需接种加强针,该项医学指标不低于50,产生抗体较强,不需接种加强针.请先完成下面的列联表,若根据小概率的独立性检验,认为接种疫苗与志愿者产生抗体的强弱有关联,求的最大值.
疫苗抗体合计
抗体弱抗体强
疫苗


疫苗


合计


附:,其中.
0.250.0250.005
1.3235.0247.879
2024-01-15更新 | 818次组卷 | 4卷引用:山东省青岛市第二中学2024届高三上学期期末数学试题
6 . 某中学的风筝兴趣小组决定举行一次盲盒风筝比赛,比赛采取得分制度评选优胜者,可选择的风筝为硬翅风筝软翅风筝串式风筝板式风筝立体风筝,共有5种风筝,将风筝装入盲盒中摸取风筝,每位参赛选手摸取硬翅风筝或软翅风筝均得1分并放飞风筝,摸取串式风筝板式风筝立体风筝均得2分并放飞风筝,每次摸取风筝的结果相互独立,且每次只能摸取1只风筝,每位选手每次摸取硬翅风筝或软翅风筝的概率为,摸取其余3种风筝的概率为.
(1)若选手甲连续摸了2次盲盒,其总得分为分,求的分布列与期望;
(2)假设选手乙可持续摸取盲盒,即摸取盲盒的次数可以为中的任意一个数,记乙累计得分的概率为,当时,求.
2023-12-22更新 | 1362次组卷 | 6卷引用:山东省潍坊市安丘市青云学府2024届高三上学期期末适应性考试数学试题
7 . 某中学有AB两个餐厅为老师与学生们提供午餐与晚餐服务,王同学、张老师两人每天午餐和晚餐都在学校就餐,近一个月(30天)选择餐厅就餐情况统计如下:
选择餐厅情况(午餐,晚餐)
王同学9天6天12天3天
张老师6天6天6天12天
假设王同学、张老师选择餐厅相互独立,用频率估计概率.
(1)估计一天中王同学午餐和晚餐选择不同餐厅就餐的概率;
(2)记X为王同学、张老师在一天中就餐餐厅的个数,求X的分布列和数学期望
(3)假设M表示事件“A餐厅推出优惠套餐”,N表示事件“某学生去A餐厅就餐”,,已知推出优惠套餐的情况下学生去该餐厅就餐的概率会比不推出优惠套餐的情况下去该餐厅就餐的概率要大,证明.
2023-12-14更新 | 1656次组卷 | 8卷引用:山东省济南市山东省实验中学2024届高三上学期第三次诊断考试数学试题
8 . 数独是源自18世纪瑞士的一种数学游戏,玩家需要根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个粗线宫(3×3)内的数字均含1~9,且不重复.数独爱好者小明打算报名参加“丝路杯”全国数独大赛初级组的比赛.
参考数据
1 7500.370.55
参考公式:对于一组数据,其经验回归方程的斜率和截距的最小二乘估计分别为.
(1)赛前小明进行了一段时间的训练,每天解题的平均速度y(秒/题)与训练天数x(天)有关,经统计得到如下数据:
x(天)1234567
y(秒/题)910800600440300240210
现用作为回归方程模型,请利用表中数据,求出该回归方程;(用分数表示)
(2)小明和小红玩“对战赛”,每局两人同时开始解一道数独题,先解出题的人获胜,不存在平局,两人约定先胜3局者赢得比赛.若小明每局获胜的概率为,且各局之间相互独立,设比赛X局后结束,求随机变量X的分布列及均值.
2023-12-08更新 | 1276次组卷 | 8卷引用:山东省潍坊市昌乐第一中学2024届高三上学期12月月考数学试题
9 . 法国数学家庞加莱是个喜欢吃面包的人,他每天都会到同一家面包店购买一个面包.该面包店的面包师声称自己所出售的面包的平均质量是1 000 g,上下浮动不超过50 g.这句话用数学语言来表达就是:每个面包的质量服从期望为1 000 g,标准差为50 g的正态分布.
(1)已知如下结论:若XNμσ2),从X的取值中随机抽取kkN*k≥2)个数据,记这k个数据的平均值为Y,则随机变量YN.利用该结论解决下面问题.
①假设面包师的说法是真实的,随机购买25个面包,记随机购买25个面包的平均值为Y,求PY≤980);
②庞加莱每天都会将买来的面包称重并记录,25天后,得到的数据都落在区间(950,1 050)内,并得出计算25个面包的平均质量为978.72 g.庞加莱通过分析举报了该面包师,从概率角度说明庞加莱举报该面包师的理由;
(2)假设有两箱面包(面包除颜色外,其他都一样),已知第一箱中共装有6个面包,其中黑色面包2个;第二箱中共装有8个面包,其中黑色面包3个.现随机挑选一箱,然后从该箱中随机取出2个面包,求取出黑色面包个数的分布列及数学期望.
附:①若随机变量η服从正态分布Nμσ2),则Pμσημσ)≈0.682 7,Pμ-2σημ+2σ)≈0.954 5,Pμ-3σημ+3σ)≈0.997 3;②通常把发生概率小于0.05的事件称为小概率事件,小概率事件基本不会发生.
2024-03-21更新 | 398次组卷 | 21卷引用:山东省青岛市四区2021-2022学年高三上学期期末考试数学试题
10 . 某中学高三年级为丰富学生课余生活,减轻学习压力,组建了篮球社团.为了了解学生喜欢篮球是否与性别有关,随机抽取了该年级男、女同学各50名进行调查,部分数据如表所示:

喜欢篮球

不喜欢篮球

合计

男生

20

女生

15

合计

附:

0.1

0.05

0.01

0.005

0.001

2.706

3.841

6.635

7.879

10.828

(1)根据所给数据完成上表,依据的独立性检验,能否有的把握认为该校高三年级学生喜欢篮球与性别有关?
(2)社团指导老师从喜欢篮球的学生中抽取了2名男生和1名女生示范罚分线处定点投篮.已知这两名男生进球的概率均为,这名女生进球的概率为,每人投篮一次,假设各人进球相互独立,求3人进球总次数的分布列和数学期望.
首页2 3 4 5 6 7 8 9 末页
跳转: 确定
共计 平均难度:一般