组卷网 > 知识点选题 > 超几何分布
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 92 道试题
1 . 某自然保护区经过几十年的发展,某种濒临灭绝动物数量有大幅度的增加.已知这种动物拥有两个亚种(分别记为种和种).为了调查该区域中这两个亚种的数目,某动物研究小组计划在该区域中捕捉100个动物,统计其中种的数目后,将捕获的动物全部放回,作为一次试验结果.重复进行这个试验共20次,记第次试验中种的数目为随机变量.设该区域中种的数目为种的数目为均大于100),每一次试验均相互独立.
(1)求的分布列;
(2)记随机变量.已知
(i)证明:
(ii)该小组完成所有试验后,得到的实际取值分别为.数据的平均值,方差.采用分别代替,给出的估计值.
(已知随机变量服从超几何分布记为:(其中为总数,为某类元素的个数,为抽取的个数),则
2024-05-08更新 | 1229次组卷 | 2卷引用:2024届辽宁省辽宁省高三重点高中协作校联考模拟预测数学试题
2 . 小明从4双鞋中,随机一次取出2只,
(1)求取出的2只鞋都不来自同一双的概率;
(2)若这4双鞋中,恰有一双是小明的,记取出的2只鞋中含有小明的鞋的个数为X,求X的分布列及数学期望
3 . 盒中有10个灯泡,其中有三个是坏的,现从盒中随机抽取4个,那么概率是的事件为(       
A.恰有1个是坏的B.4个全是好的C.恰有2个是坏的D.至多有2个是坏的
2024-04-26更新 | 538次组卷 | 1卷引用:辽宁省沈阳市翔宇中学2023-2024学年高二下学期第一次月考测试数学试题
4 . 甲进行摸球跳格游戏.图上标有第1格,第2格,,第25格,棋子开始在第1格.盒中有5个大小相同的小球,其中3个红球,2个白球(5个球除颜色外其他都相同).每次甲在盒中随机摸出两球,记下颜色后放回盒中,若两球颜色相同,棋子向前跳1格;若两球颜色不同,棋子向前跳2格,直到棋子跳到第24格或第25格时,游戏结束.记棋子跳到第格的概率为.
(1)甲在一次摸球中摸出红球的个数记为,求的分布列和期望;
(2)证明:数列为等比数列,并求的通项公式.
2024-04-24更新 | 679次组卷 | 1卷引用:辽宁省部分学校2023-2024学年高二下学期4月月考数学试题
智能选题,一键自动生成优质试卷~
5 . 袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是.从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望______.
2024-04-12更新 | 1151次组卷 | 8卷引用:辽宁省大连市第八中学2023-2024学年高二下学期4月月考数学试题
6 . 某企业响应国家“强芯固基”号召,为汇聚科研力量,准备科学合理增加研发资金.为
了解研发资金的投入额x(单位:千万元)对年收入的附加额y(单位:千万元)的影响,对2017年至2023年研发资金的投入额和年收入的附加额进行研究,得到相关数据如下:

年份

2017

2018

2019

2020

2021

2022

2023

投入额

10

30

40

60

80

90

110

年收入的附加额

7.30


(1)求y关于x的线性回归方程;
(2)若年收入的附加额与投入额的比值大于,则称对应的年份为“优”,从上面的7个年份中任意取3个,记X表示这三个年份为“优”的个数,求X的分布列及数学期望.
参考数据:
附:回归方程的斜率和截距的最小二乘估计公式分别为:
7 . 某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的20件产品作为样本称出它们的质量(单位:克),质量的分组区间为,…,.由此得到样本的频率分布直方图(如下图).

   

(1)根据频率分布直方图,求质量超过505克的产品数量;
(2)在上述抽取的20件产品中任取3件,设为质量超过505克的产品数量,求的分布列;
(3)从该流水线上任取5件产品,设为质量超过505克的产品数量,求的数学期望和方差.
2024-03-21更新 | 1500次组卷 | 5卷引用:辽宁省新高考联盟(点石联考)2023-22024学年高二下学期3月阶段测试数学试题
8 . 为了开展“成功源自习惯,习惯来自日常”主题班会活动,引导学生养成良好的行为习惯,提高学习积极性和主动性,在全校学生中随机调查了名学生的某年度综合评价学习成绩,研究学习成绩是否与行为习惯有关.已知在全部人中随机抽取一人,抽到行为习惯良好的概率为,现按“行为习惯良好”和“行为习惯不够良好”分为两组,再将两组学生的学习成绩分成五组:,绘制得到如图所示的频率分布直方图.

(1)若规定学习成绩不低于分为“学习标兵”,请你根据已知条件填写下列列联表,并判断是否有的把握认为“学习标兵与行为习惯是否良好有关”;

行为习惯良好

行为习惯不够良好

总计

学习标兵

非学习标兵

总计

(2)现从样本中学习成绩低于分的学生中随机抽取人,记抽到的学生中“行为习惯不够良好”的人数为,求的分布列和期望.
参考公式与数据:,其中.

2024-02-28更新 | 556次组卷 | 6卷引用:辽宁省沈阳市辽宁实验中学北校2023-2024学年高二下学期4月阶段测试数学试题
填空题-单空题 | 较易(0.85) |
名校
9 . 某班要从3名男同学和5名女同学中随机选出4人去参加某项比赛,设抽取的4人中女同学的人数为,则__________.
2024-01-17更新 | 1114次组卷 | 6卷引用:辽宁省县级重点高中协作体2023-2024学年高二上学期期末数学试题
10 . 某企业打算处理一批产品,这些产品每箱10件,以箱为单位销售,已知这批产品中每箱都有废品.每箱的废品率只有或者两种可能,且两种可能的产品市场占有率分别为.假设该产品正品每件市场价格为100元,废品不值钱,现处理价格为每箱840元,遇到废品不予更换,以一箱产品中正品的价格期望值作为决策依据.(运算结果保留分数)
(1)在不开箱检验的情况下,判断是否可以购买;
(2)现允许开箱,不放回地随机从一箱中抽取2件产品进行检验,已发现在抽取检验的2件产品中,其中恰有一件是废品
①求此箱是废品率为的概率;
②判断此箱是否可以购买,并说明理由.
2024-01-16更新 | 997次组卷 | 4卷引用:辽宁省部分学校2024届高三上学期期末数学试题
共计 平均难度:一般