组卷网 > 章节选题 > 选修1-1
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 217 道试题
1 . 在平面直角坐标系中,已知点为动点,满足.
(1)求动点的轨迹的方程;
(2)已知过点的直线与曲线交于两点,连接.
(ⅰ)记直线的斜率分别为,求证:为定值;
(ⅱ)直线与直线分别交于两点,求的最小值.
7日内更新 | 74次组卷 | 1卷引用:浙江省北斗星盟2023-2024学年高三下学期适应性联考数学试卷
2 . 已知函数.
(1)当时,求的单调区间;
(2)若关于的方程有两根(其中),
①求的取值范围;
②当时,求的取值范围.
7日内更新 | 80次组卷 | 1卷引用:浙江省杭州市“桐·浦·富·兴”教研联盟高二5月考试2023-2024学年高二下学期5月调研测试数学试题
3 . 已知抛物线:,焦点为F上的一个动点,在点A处的切线,点P上且与点A不重合.直线PF与Γ交于BC两点,且平分直线AB和直线AC的夹角.
(1)求的方程(用表示);
(2)若从点F发出的光线经过点A反射,证明:反射光线平行于x轴;
(3)若点A坐标为,求点P坐标.
7日内更新 | 322次组卷 | 1卷引用:浙江省东阳市2024届高三5月模拟考试数学试题
4 . 已知函数处的切线与直线垂直.
(1)求
(2)求的极值.
7日内更新 | 150次组卷 | 1卷引用:浙江省杭州市“桐·浦·富·兴”教研联盟高二5月考试2023-2024学年高二下学期5月调研测试数学试题
5 . 如图,在平面直角坐标系中,轴上关于原点对称的两个点,过点倾斜角为的直线与抛物线交于两点,且

(1)若的焦点,求证:
(2)过点轴的垂线,垂足为,若,求直线的方程.
7日内更新 | 461次组卷 | 3卷引用:浙江省绍兴市第一中学2024届高三下学期5月模拟数学试题
6 . 帕德近似是法国数学家亨利•帕德发明的用有理多项式近似特定函数的方法.给定两个正整数,函数处的阶帕德近似定义为:,且满足:,…,. 已知处的阶帕德近似为.注:,…
(1)求实数的值;
(2)当时,试比较的大小,并证明;
(3)定义数列,求证:.
2024-05-31更新 | 643次组卷 | 3卷引用:浙江省绍兴市上虞区2023-2024学年高三下学期适应性教学质量调测数学试卷
7 . 已知,动点满足,动点的轨迹为曲线于另外一点于另外一点.
(1)求曲线的标准方程;
(2)已知是定值,求该定值;
(3)求面积的范围.
2024-05-31更新 | 494次组卷 | 1卷引用:浙江省宁波市镇海中学2024届高三下学期适应性测试数学试卷
8 . 已知函数.
(1)讨论的单调性;
(2)若对任意的恒成立,求的范围.
2024-05-31更新 | 835次组卷 | 1卷引用:浙江省宁波市镇海中学2024届高三下学期适应性测试数学试卷
9 . 在平面直角坐标系中,如果将函数的图象绕坐标原点逆时针旋转后,所得曲线仍然是某个函数的图象,则称为“旋转函数”.
(1)判断函数是否为“旋转函数”,并说明理由;
(2)已知函数是“旋转函数”,求的最大值;
(3)若函数是“旋转函数”,求的取值范围.
2024-05-30更新 | 401次组卷 | 1卷引用:浙江省名校新高考研究联盟(Z20名校联盟)2024届高三第三次联考(三模)数学试题
10 . 已知椭圆的左、右焦点分别为 ,焦距为 ,离心率为, 直线 与椭圆交于 两点 (其中点 轴上方,点 轴下方).
(1)求椭圆 的标准方程;
(2)如图,将平面 沿 轴折叠,使 轴正半轴和 轴所确定的半平面(平面 )与 轴 负半轴和 轴所确定的半平面 (平面 ) 垂直.

   

①若折叠后 ,求 的值;
②是否存在 ,使折叠后 两点间的距离与折叠前 两点间的距离之比为 ?
2024-05-30更新 | 362次组卷 | 1卷引用:浙江省名校新高考研究联盟(Z20名校联盟)2024届高三第三次联考(三模)数学试题
共计 平均难度:一般