组卷网 > 章节选题 > 选修2-3
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 14 道试题
1 . 一个质点在随机外力的作用下,从平面直角坐标系的原点出发,每隔1秒等可能地向上、向下、向左或向右移动一个单位.
(1)共移动两次,求质点与原点距离的分布列和数学期望;
(2)分别求移动4次和移动6次质点回到原点的概率;
(3)若共移动次(大于0,且为偶数),求证:质点回到原点的概率为.
2024-06-19更新 | 267次组卷 | 2卷引用:河北省“五个一”名校联盟2025届高三第一次联考数学试卷
2 . 手机完全充满电量,在开机不使用的状态下,电池靠自身消耗一直到出现低电量警告之间所能维持的时间称为手机的待机时间.为
了解AB两个不同型号手机的待机时间,现从某卖场库存手机中随机抽取AB两个型号的手机各7台,在相同条件下进行测试,统计结果如下:

手机编号

1

2

3

4

5

6

7

A型待机时间

120

125

122

124

124

123

123

B型待机时间

118

123

127

120

124

其中,是正整数,且.
(1)该卖场有56台A型手机,试估计其中待机时间不少于123小时的台数;
(2)从A型号被测试的7台手机中随机抽取4台,记待机时间大于123小时的台数为,求的分布列;
(3)设AB两个型号被测试手机待机时间的平均值相等,当B型号被测试手机待机时间的方差最小时,写出的值(结论不要求证明).
3 . 甲、乙、丙三人进行传球游戏,每次投掷一枚质地均匀的正方体骰子决定传球的方式:当球在甲手中时,若骰子点数大于3,则甲将球传给乙,若点数不大于3,则甲将球保留;当球在乙手中时,若骰子点数大于4,则乙将球传给甲,若点数不大于4,则乙将球传给丙;当球在丙手中时,若骰子点数大于3,则丙将球传给甲,若骰子点数不大于3,则丙将球传给乙.初始时,球在甲手中.
(1)设前三次投掷骰子后,球在甲手中的次数为,求随机变量的分布列和数学期望;
(2)投掷次骰子后,记球在乙手中的概率为,求数列的通项公式;
(3)设,求证:
2024-03-13更新 | 1657次组卷 | 3卷引用:湖北省武汉市(武汉六中)部分重点中学2024届高三第二次联考数学试题变式题17-22
4 . 某人投掷两枚骰子,取其中一枚的点数记为点的横坐标,另一枚的点数记为点的纵坐标,令事件”,事件为奇数”.
(1)证明:事件相互独立;
(2)若连续抛掷这两枚骰子三次,求点在圆内的次数的分布列与期望.
2024-05-20更新 | 443次组卷 | 1卷引用:河北省邯郸市2024届高三下学期高考保温数学试题
5 . 某箱中有个除颜色之外均相同的球,已知.箱中1个球为白球,其余为黑球.现在该箱中进行一取球实验:每次从箱中等可能地取出一个球,若取出白球或取球次后结束实验,否则进行相应操作进行下一次取球.设实验结束时的取球次数为.
(1)若取出黑球后放回箱中,求的数学期望;
(2)若取出黑球后替换为白球放回箱中,求的最大值,并证明:.
2024-08-24更新 | 304次组卷 | 2卷引用:河北省L16联盟2024年普通高等学校招生全国统一考试模拟演练数学试题
6 . 某民营学校为增强实力与影响力,大力招揽名师、建设校园硬件设施,近5年该校招生人数的数据如下表:

年份序号x

1

2

3

4

5

招生人数y/千人

0.8

1

1.3

1.7

2.2

(1)由表中数据可看出,可用线性回归模型拟合的关系,请用相关系数加以证明;
(2)求关于的回归直线方程,并预测当年份序号为7时该校的招生人数.
参考数据:
参考公式:相关系数,回归方程中斜率和截距的最小二乘估计公式分别为
2024-03-21更新 | 1040次组卷 | 6卷引用:河北省邯郸市2024届高三第三次调研考试考试数学试题
7 . 已知在一个不透明的盒中装有一个白球和两个红球(小球除颜色不同,其余完全相同),某抽球试验的规则如下:试验者在每一轮需有放回地抽取两次,每次抽取一个小球,从第一轮开始,若试验者在某轮中的两次均抽到白球,则该试验成功,并停止试验.否则再将一个黄球(与盒中小球除颜色不同,其余完全相同)放入盒中,然后继续进行下一轮试验.
(1)若规定试验者甲至多可进行三轮试验(若第三轮不成功,也停止试验),记甲进行的试验轮数为随机变量,求的分布列和数学期望;
(2)若规定试验者乙至多可进行轮试验(若第轮不成功,也停止试验),记乙在第轮使得试验成功的概率为,则乙能试验成功的概率为,证明:.
8 . 某排球教练带领甲、乙两名排球主力运动员训练排球的接球与传球,首先由教练第一次传球给甲、乙中的某位运动员,然后该运动员再传回教练.每次教练接球后按下列规律传球:若教练上一次是传给某运动员,则这次有的概率再传给该运动员,有的概率传给另一位运动员.已知教练第一次传给了甲运动员,且教练第次传球传给甲运动员的概率为.
(1)求
(2)求的表达式;
(3)设,证明:.
2023-12-05更新 | 2193次组卷 | 11卷引用:河北省部分重点高中2024届高三高考模拟数学试题
9 . 甲乙两人进行象棋比赛,赛前每人发3枚筹码.一局后负的一方,需将自己的一枚筹码给对方;若平局,双方的筹码不动,当一方无筹码时,比赛结束,另一方最终获胜.由以往两人的比赛结果可知,在一局中甲胜的概率为0.3乙胜的概率为0.2.
(1)第一局比赛后,甲的筹码个数记为,求的分布列和期望;
(2)求四局比赛后,比赛结束的概率;
(3)若表示“在甲所得筹码为枚时,最终甲获胜的概率”,则.证明:为等比数列.
2023-07-20更新 | 1995次组卷 | 7卷引用:河北省张家口市2023届高三三模数学试题
10 . 第31届世界大学生夏季运动会将于今年在我国成都举行.某体校田径队正在积极备战,考核设有100米、400米和1500米三个项目,需要选手依次完成考核,成绩合格后的积分分别记为,总成绩为累计积分和.考核规定:项目考核逐级进阶,即选手只有在低一级里程项目考核合格后,才能进行下一级较高里程项目的考核,否则考核终止.对于100米和400米项目,每个项目选手必须考核2次,且全部达标才算合格;对于1500米项目,选手必须考核3次,但只要达标2次及以上就算合格.已知选手甲三个项目的达标率依次为,选手乙三个项目的达标率依次为,每次考核是否达标相互独立.
(1)用表示选手甲考核积分的总成绩,求的分布列和数学期望;
(2)证明:无论取何值,选手甲考核积分总成绩的数学期望值都大于选手乙考核积分总成绩的数学期望值.
2023-05-05更新 | 1529次组卷 | 5卷引用:河北省名校2023届高三5月模拟数学试题
共计 平均难度:一般