组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 2704 道试题
1 . 已知函数,则下列结论正确的是(       
A.函数有且只有一个零点
B.若有且只有一个零点,则
C.若有两个极值点,则
D.当时,总有,则
2024-05-09更新 | 163次组卷 | 1卷引用:重庆市渝北中学2023-2024学年高二下学期期中质量监测数学试题
3 . 已知双曲线的左、右焦点分别为,左、右顶点分别为为坐标原点,直线交双曲线的右支于两点(不同于右顶点),且与双曲线的两条渐近线分别交于两点,则(       
A.为定值
B.
C.点到两条渐近线的距离之和的最小值为
D.不存在直线使
2024-05-08更新 | 798次组卷 | 3卷引用:重庆市乌江新高考协作体2024届高考模拟监测(一)数学试题
4 . 已知向量满足:为单位向量,且相互垂直,又对任意不等式恒成立,若,则的最小值为(       
A.4B.5C.6D.7
2024-05-08更新 | 167次组卷 | 1卷引用:重庆市万州二中教育集团2023-2024学年高一下学期期中考试数学试卷
5 . 1712年英国数学家布鲁克·泰勒提出了著名的泰勒公式,该公式利用了多项式函数曲线来逼近任意一个原函数曲线,该公式在近似计算,函数拟合,计算机科学上有着举足轻重的作用.如下列常见函数的阶泰勒展开式为:



其中,读作的阶乘.
1748年瑞士数学家莱昂哈德·欧拉在泰勒公式的灵感下创造了人类数学最美妙的公式,即欧拉公式,特别的欧拉恒等式被后世称为“上帝公式”.欧拉公式建立了复数域中指数函数与圆函数(正余弦函数)的关系,利用欧拉公式还可以完成圆的等分,即棣莫弗定理的应用.
(1)请写出复数的三角形式,并利用泰勒展开式估算出的3阶近似值(精确到0.001);
(2)请根据上述材料证明欧拉公式,并计算
(3)记,由棣莫弗定理得,从而得,复数,我们称其为1在复数域内的三次方根. 若为64在复数域内的6次方根.求取值构成的集合,其中.
2024-05-08更新 | 172次组卷 | 1卷引用:重庆市万州二中教育集团2023-2024学年高一下学期期中考试数学试卷
6 . 如图1所示,在中,点在线段上,满足是线段上的点,且满足,线段与线段交于点

(1)若,求实数的值;
(2)若,求实数的值;
(3)如图2,过点的直线与边分别交于点,设
(ⅰ)求的最大值;
(ⅱ)设的面积为,四边形的面积为,求的取值范围.
2024-05-07更新 | 213次组卷 | 1卷引用:重庆市第十八中学2023-2024学年高一下学期期中考试数学试题
7 . 青岛胶东国际机场的显著特点之一是弯曲曲线的运用,衡量曲线弯曲程度的重要指标是曲率.考察图所示的光滑曲线上的曲线段,其弧长为,当动点从A沿曲线段运动到B点时,A点的切线也随着转动到B点的切线,记这两条切线之间的夹角为(它等于的倾斜角与的倾斜角之差).显然,当弧长固定时,夹角越大,曲线的弯曲程度就越大;当夹角固定时,弧长越小则弯曲程度越大,因此可以定义为曲线段的平均曲率;显然当B越接近A,即越小,K就越能精确刻画曲线C在点A处的弯曲程度,因此定义曲线在点处的曲率计算公式为,其中

(1)求单位圆上圆心角为的圆弧的平均曲率;
(2)已知函数,求曲线的曲率的最大值;
(3)已知函数,若曲率为0时x的最小值分别为,求证:
8 . 已知都是非零有理数,则在中,一定是有理数的有(       )个.
A.0B.1C.2D.3
9 . 柏拉图实体,也称为柏拉图多面体,是一组具有高度对称性的几何体.它们的特点是每个面都是相同的正多边形,每个顶点处的面的排列也完全相同.正八面体就是柏拉图实体的一种.如图是一个棱长为2的正八面体.甲、乙二人使用它作游戏:甲任选三个顶点,乙任选三个面的中心点,构成三角形.甲、乙选择互不影响,下列说法正确的是(       

A.该正八面体的外接球的体积为
B.平面截该正八面体的外接球所得截面的面积为
C.甲能构成正三角形的概率为
D.甲与乙均能构成正三角形的概率为
2024-05-07更新 | 524次组卷 | 1卷引用:重庆市巴蜀中学校2024届高三下学期高考适应性月考(九)(4月)数学试题
10 . 某项团体比赛分为两轮:第一轮由团队队员轮流与AI人工智能进行比赛.若挑战成功,参加第二轮攻擂赛与上任擂主争夺比赛胜利.现有甲队参加比赛,队中共3名事先排好顺序的队员参加挑战.
(1)第一轮与对战,比赛的规则如下:若某队员第一关闯关成功,则该队员继续闯第二关,否则该队员结束闯关并由下一位队员接力去闯第一关,若某队员第二关闯关成功,则该团队接力闯关活动结束,否则该成员结束闯关并由下一位队员接力去闯第二关;当第二关闯关成功或所有队员全部上场参加了闯关,该队挑战活动结束.已知甲队每位成员闯过第一关和第二关的概率分别为,且每位成员闯关是否成功互不影响,每关结果也互不影响.用表示甲队闯关活动结束时上场闯关的成员人数,求的期望;
(2)甲队已经顺利进入第二轮,现和擂主乙队号队员进行比赛,规则为:双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛直到有一方队员全被淘汰,另一方获得胜利.已知,甲队三名队员每场比赛的胜率分别为:,若要求甲队获胜的概率大于,问是否满足?请说明理由.
2024-05-07更新 | 741次组卷 | 1卷引用:重庆市巴蜀中学校2024届高三下学期高考适应性月考(九)(4月)数学试题
共计 平均难度:一般