组卷网>知识点选题>分类讨论法解决二次函数闭区间上的最值问题
解析
| 共计 1175 道试题
2 . 已知函数
(1)若对任意的,不等式恒成立,求的取值范围;
(2)若对任意,存在,使得,求的取值范围.
3 . 已知函数,关于的最值有如下结论,其中正确的是(     
A.在区间上的最小值为1
B.在区间上既有最小值,又有最大值
C.在区间上的最小值为2,最大值为5
D.在区间上的最大值为
4 . 设函数f(x)=x|xa|(a∈R)
(1)讨论f(x)的奇偶性,并说明理由;
(2)当x∈[0,1]时,f(x)的最大值为,求实数a的取值范围.
8 . 已知函数的定义域为,若,满足,则称函数具有性质.已知定义在上的函数具有性质,则实数的取值范围是(       
A.B.C.D.
9 . 已知函数,其中.
(1)当时,若,求的值;
(2)记的最大值为,求的表达式并求出的最小值.
10 . 二十大的顺利召开,标志着我们党对长期执政的马克思主义政党建设的规律性认识达到了新的高度,也标志着中国共产党带领中国人民踏上了第二个百年奋斗目标的赶考之路.为了庆祝二十大的顺利闭幕,某地印刷厂拟将部分亚运会宣传册的生产线关闭,转而生产二十大纪念册.已知两种产品的售价(单位:元/册)都限制在的范围中,且在市场调研中,预期11月亚运会宣传册的销售量(单位:万册)与其售价(单位:元/册)的关系为,预期11月二十大纪念册的销售量(单位:万册)与其售价(单位:元/册)的关系为,求:
(1)若两种产品的售价都为5元/册,求总销售额;
(2)两种产品的售价分别定为多少时,可以获得最大的总销售额,并求此时最大总销售额.
共计 平均难度:一般