组卷网 > 知识点选题 > 分类讨论法解决二次函数闭区间上的最值问题
解析
| 共计 1612 道试题
1 . 已知四边形中,,设的面积分别为,则的最大值为__________.
7日内更新 | 124次组卷 | 1卷引用:四川省雅安市2023-2024学年高三三诊数学(理)试题
2 . 当实数变化时,函数最大值的最小值为(       
A.2B.4C.6D.8
7日内更新 | 102次组卷 | 1卷引用:安徽省淮北市2024届高三第二次质量检测数学试题
3 . 已知定义在上的函数满足.
(1)求
(2)若函数,是否存在实数使得的最小值为?若存在,求出实数的值;若不存在,请说明理由.
7日内更新 | 223次组卷 | 1卷引用:浙江省宁波市镇海中学2023-2024学年高二下学期期中考试数学试卷
4 . 已知函数
(1)若关于的方程只有一个实数解,实数的取值范围为___________
(2)若当时,不等式恒成立,求实数的取值范围为_________
(3)函数在区间上的最大值为___________
2024-05-09更新 | 94次组卷 | 1卷引用:专题3 含绝对值的函数问题【讲】(压轴题大全)
5 . 已知函数上的最大值为4,求的值.
2024-05-07更新 | 75次组卷 | 1卷引用:安徽省宣城市宁国中学2023-2024学年高一上学期实验班新生入学考试数学试题
6 . 若定义在A上的函数和定义在B上的函数,对任意的,存在,使得t为常数),则称具有关系.已知函数
(1)若函数,判断是否具有关系,并说明理由;
(2)若函数,且具有关系,求a的最大值;
(3)若函数,且具有关系,求m的取值范围.
2024-05-02更新 | 144次组卷 | 1卷引用:四川省内江市2023-2024学年高一下学期4月期中联考数学试题
7 . 如图是函数)的部分图像,MN是它与x轴的两个不同交点,DMN之间的最高点且横坐标为,点是线段DM的中点.

   

(1)求函数的解析式;
(2)若时,函数的最小值为,求实数a的值.
2024-04-23更新 | 242次组卷 | 1卷引用:山东省威海市第一中学2023-2024学年高一下学期4月月考数学试题
2024高三·上海·专题练习
8 . 已知函数,设的最大值、最小值分别为,若,则正整数的取值个数是______.
2024-04-17更新 | 71次组卷 | 1卷引用:信息必刷卷03(上海专用)
9 . 已知函数,记在区间上的最大值.
(1)当时,求的值;
(2)若,证明
2024-04-16更新 | 99次组卷 | 1卷引用:大招8 平口单峰函数
10 . 函数,其中
(1)当时,求不等式的解集;
(2)当时,fx)的最小值为0,求a的值.
2024-04-03更新 | 228次组卷 | 1卷引用:北京市东直门中学2023-2024学年高一上学期期中考试数学试卷
共计 平均难度:一般