组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 139 道试题
1 . 已知幂的基本不等式:当时,.请利用此基本不等式解决下列相关问题:
(1)当时,求的取值范围;
(2)当时,求证:
(3)利用(2)证明对数函数的单调性:当时,对数函数上是严格增函数.
2024-01-10更新 | 98次组卷 | 2卷引用:上海奉贤区致远高级中学-2022-2023学年高一上学期期末练习数学试题
解答题-证明题 | 较难(0.4) |
解题方法
2 . 如果函数满足:对于任意,均有m为正整数)成立,则称函数在D上具有“m级”性质.
(1)分别判断函数,是否在R上具有“1级”性质,并说明理由;
(2)设函数R具有“m级”性质,对任意的实数a,证明函数具有“m级”性质;
(3)若函数在区间以及区间)上都具有“1级”性质,求证:该函数在区间上具有“1级”性质.
2024-01-10更新 | 183次组卷 | 3卷引用:上海奉贤区致远高级中学-2022-2023学年高一上学期期末练习数学试题
解答题-证明题 | 困难(0.15) |
名校
3 . 若函数的定义域为,且对于任意的,“”的充要条件是“”,则称函数上的“单值函数”.对于函数,记
,…,,其中,2,3,…,并对任意的,记集合,并规定.
(1)若,函数的定义域为,求
(2)若函数的定义域为,且存在正整数,使得对任意的,求证:函数上的“单值函数”;
(3)设,若函数的定义域为,且表达式为:
判断是否为上的“单值函数”,并证明对任意的区间,存在正整数,使得.
2023-11-22更新 | 426次组卷 | 2卷引用:上海市复旦大学附属中学2023-2024学年高一上学期期中考试数学试题(A卷)
4 . 已知函数的定义域为R,若对任意区间,存在,使,则的生成函数.
(1)求证:的生成函数;
(2)若的生成函数,判断并证明的单调性;
(3)若的生成函数,实数,求的一个生成函数.
2023-05-05更新 | 570次组卷 | 4卷引用:上海交通大学附属中学2022-2023学年高一下学期期中数学试题
5 . 证明:
(1).
(2)已知,求证:
2023-03-22更新 | 280次组卷 | 3卷引用:上海市三林中学东校2022-2023学年高一下学期3月月数学试题
解答题-证明题 | 适中(0.65) |
名校
6 . 给定不共面的4点,作过其中3个点的平面,所有4个这样的平面围成的几何体称为四面体(如图所示),预先给定的4个点称为四面体的顶点,2个顶点的连线称为四面体的棱,3个顶点所确定的三角形称为四面体的面.求证:四面体中任何一对不共顶点的棱所在的直线一定是异面直线.

(1)请你用异面直线判定定理证明该结论;
(2)请你用反证法证明该结论.
2022-12-01更新 | 362次组卷 | 2卷引用:上海市七宝中学2021-2022学年高一下学期期末数学试题
7 . 已知函数的定义域为为大于的常数,对任意,都满足,则称函数上具有“性质”.
(1)试判断函数和函数是否具有“性质”(无需证明);
(2)若函数具有“性质”,且,求证:对任意,都有
(3)若函数的定义域为,且具有“性质”,试判断下列命题的真假,并说明理由,
①若在区间上是严格增函数,则此函数在上也是严格增函数;
②若在区间上是严格减函数,则此函数在上也是严格减函数.
2023-01-12更新 | 629次组卷 | 6卷引用:上海市闵行区2022-2023学年高一上学期期末数学试题
8 . (1)求证:已知,并指出等号成立的条件;
(2)求证:对任意的,关于的两个方程至少有一个方程有实数根(反证法证明);
(3)求证:使得不等式对一切实数都成立的充要条件是.
2022-10-15更新 | 270次组卷 | 2卷引用:上海市行知中学2022-2023学年高一上学期10月质量检测数学试题
解答题-证明题 | 较难(0.4) |
名校
9 . 定理(三角不等式),对于任意的,恒有.定义:已知,对于有序数组,称为有序数组的波动距离,记作,即,请根据上述俼息解决以下几个问题:
(1)求函数的最小值,并指出函数取到最小值时的取值范围;
(2)①求有序数组的波动距离
②求证:若,则;题(注:该命题无需证明,需要时可直接使用).设两两不相等的四个实数,求有序数组的波动距离的最大值.
2022-08-22更新 | 416次组卷 | 7卷引用:上海市控江中学2021-2022学年高一上学期期中数学试题
10 . 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.
阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察;(2)整体设元;(3)整体代入;(4)整体求和等.
例如,,求证:.
证明:原式.
波利亚在《怎样解题》中指出:“当你找到第一个藤菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征.
阅读材料二:基本不等式,当且仅当时等号成立,它是解决最值问题的有力工具.
例如:在的条件下,当x为何值时,有最小值,最小值是多少?
解:∵,∴,即,∴
当且仅当,即时,有最小值,最小值为2.
请根据阅读材料解答下列问题
(1)已知如,求下列各式的值:
___________.
___________.
(2)若,解方程.
(3)若正数ab满足,求的最小值.
2021-10-29更新 | 530次组卷 | 3卷引用:第二章 等式与不等式(压轴题专练)-速记·巧练(沪教版2020必修第一册)
共计 平均难度:一般