组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 17 道试题
1 . 若函数的一个周期是,则的取值可以是___________.(写出一个即可).
2 . 某高中三年级的甲、乙两个同学同时参加某大学的自主招生,在申请的材料中提交了某学科10次的考试成绩,记录如下:
甲:78   86   95   97   88   82   76   89   92   95
乙:73   83   69   82   93   86   79   75   84   99
(1)根据两组数据,作出两人成绩的茎叶图,并通过茎叶图比较两人本学科成绩平均值的大小关系及方差的大小关系(不要求计算具体值,直接写出结论即可)
(2)现将两人的名次分为三个等级:
成绩分数
等级合格良好优秀
根据所给数据,从甲、乙获得“优秀”的成绩组合中随机选取一组,求选中甲同学成绩高于乙同学成绩的组合的概率.
3 . 手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行评分,评分的频数分布表如下:
女性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数2040805010
男性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数4575906030
(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);
(2)把评分不低于70分的用户称为“评分良好用户”,完成下列列联表,并判断能否有的把握认为“评分良好用户”与性别有关?
女性用户男性用户合计
“认可”手机
“不认可”手机
合计
参考附表:
参考公式,其中
4 . 《中共中央国务院关于全面推进乡村振兴加快农业农村现代化的意见》,这是21世纪以来第个指导“三农”工作的中央一号文件.文件指出,民族要复兴,乡村必振兴,要大力推进数字乡村建设,推进智慧农业发展.某乡村合作社借助互联网直播平台进行农产品销售,众多网红主播参与到直播当中,在众多网红直播中,统计了名网红直播的观看人次和农产品销售量的数据,得到如图所示的散点图.

(1)利用散点图判断,哪一个更适合作为观看人次和销售量的回归方程类型;(只要给出判断即可,不必说明理由)
(2)对数据作出如下处理:得到相关统计量的值如表:

其中令.
根据(1)的判断结果及表中数据,求(单位:千件)关于(单位:十万次)的回归方程,并预测当观看人次为万人时的销售量;
参考数据和公式:
附:对于一组数据,其回归线的斜率和截距的最小二乘估计分别为:.
2023-04-16更新 | 1021次组卷 | 6卷引用:广西百色市2022-2023学年高二下学期期末教学质量调研数学试题
5 . 2020年,是人类首次成功从北坡登顶珠峰60周年,也是中国首次精确测定并公布珠峰高程的45周年.华为帮助中国移动开通珠峰峰顶5G,有助于测量信号的实时开通,为珠峰高程测量提供通信保障,也验证了超高海拔地区5G信号覆盖的可能性,在持续高风速下5G信号的稳定性,在条件恶劣地区通过简易设备传输视频信号的可能性.正如任总在一次采访中所说:“华为公司价值体系的理想是为人类服务.”有人曾问,在珠峰开通5G的意义在哪里?“我认为它是科学技术的一次珠峰登顶,告诉全世界,华为5G、中国5G的底气来自哪里.现在,5G的到来给人们的生活带来更加颠覆性的变革,某IT公司基于领先技术的支持,5G经济收入在短期内逐月攀升,该IT公司在1月份至6月份的5G经济收入y(单位:百万元)关于月份x的数据如下表所示,并根据数据绘制了如图所示的散点图.

月份x

1

2

3

4

5

6

收入y(百万元)

6.6

8.6

16.1

21.6

33.0

41.0

(1)根据散点图判断,abcd均为常数)哪一个更适宜作为5G经济收入y关于月份x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的结果及表中的数据,求出y关于x的回归方程,并预测该公司7月份的5G经济收入.(结果保留小数点后两位)
(3)从前6个月的收入中抽取2个,记收入超过20百万元的个数为X,求X的分布列和数学期望.参考数据:
3.5021.152.8517.70125.356.734.5714.30
其中,设i=1,2,3,4,5,6).
参考公式:对于一组具有线性相关关系的数据()(i=1,2,3,…,n),其回归直线的斜率和截距的最小二乘估计公式分别为.
2023-01-22更新 | 2413次组卷 | 15卷引用:广西南宁市第二中学2023届高三上学期1月月考(期末)数学(理)试题
6 . 为检测空气质量,某市环保局随机抽取了甲、乙两地201620天的PM2.5日平均浓度(单位:微克/立方米)是监测数据,得到甲地PM2.5日平均浓度的频率分布直方图和乙地PM2.5日平均浓度的频数分布表.

甲地20PM2.5日平均浓度频率分布直方图

乙地20PM2.5日平均浓度频数分布表


(1)根据乙地20PM2.5日平均浓度的频数分布表作出相应的频率分布直方图,并通过两个频率分布直方图比较两地PM2.5日平均浓度的平均值及分散程度;(不要求计算出具体值,给出结论即可)
(2)求甲地20PM2.5日平均浓度的中位数;
(3)通过调查,该市市民对空气质量的满意度从高到低分为三个等级:

记事件:“甲地市民对空气质量的满意度等级为不满意”.根据所给数据,利用样本估计总体的统计思想,以事件发生的频率作为相应事件发生的概率,求事件的概率.
2018-07-10更新 | 270次组卷 | 1卷引用:【全国市级联考】广西贺州市2017-2018学年高一下学期期末考试数学试题
7 . 某公司为了了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频率分布表.
A地区用户满意度评分的频率分布直方图

B地区用户满意度评分的频率分布表
满意度评分分组
频数2814106


(Ⅰ)在答题卡上作出B地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)
B地区用户满意度评分的频率分布直方图

(Ⅱ)根据用户满意度评分,将用户的满意度评分分为三个等级:
满意度评分低于70分70分到89分不低于90分
满意度等级不满意满意非常满意


估计哪个地区的用户的满意度等级为不满意的概率大,说明理由.
2016-12-03更新 | 9731次组卷 | 19卷引用:广西南宁市马山县金伦中学2016-2017学年高二下学期期末考试数学(文)试题
8 . 发现问题是数学建模的第一步,对我们中学生来说养成发现问题并将问题记录下来的习惯相当重要.相传2500多年前,古希腊数学家毕达哥拉斯有一次在朋友家作客时,发现朋友家用砖铺成的地面的图案(如图)反映了直角三角形三边的某种数量关系,他将自己的发现记录下来,经过后续研究发现了勾股定理.请你也来仔细观察,观察图中的多边形面积,然后用文字写出你的一个关于多边形面积的发现:________(提示:答案可以是疑问句,也可以陈述句,答案不唯一).
2022-07-09更新 | 1336次组卷 | 6卷引用:广西钦州市2021-2022学年高一下学期教学质量监测(期末)数学试题
9 . 今年全国两会期间,习近平总书记在看望参加全国政协十三届五次会议的农业界、社会福利和社会保障界委员时指出“粮食安全是‘国之大者’.悠悠万事,吃饭为大.”某校课题小组针对粮食产量与化肥施用量间关系进行研究,收集了10组化肥施用量和粮食亩产量的数据,并对这些数据作了初步处理,得到了如图所示的散点图及一些统计量的值.每亩化肥施用量为x(单位:公斤),粮食亩产量为y(单位:百公斤).

参考数据:

650

91.5

52.5

1478.6

30.5

15

15

46.5

表中
(1)根据散点图判断,,哪一个适宜作为粮食亩产量y关于每亩化肥施用量x的回归方程(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;并预测每亩化肥施用量为27公斤时,粮食亩产量y的值;
附:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为;②取
10 . 已知二次函数(其中)满足下列三个条件:①图象过坐标原点;②对于任意成立;③方程有两个相等的实数根.
(1)求函数的解析式;
(2)令(其中),求函数的单调区间(直接写出结果即可);
(3)研究方程在区间内的解的个数.
2020-02-18更新 | 521次组卷 | 1卷引用:广西梧州市2019-2020学年高一上学期期末数学试题
共计 平均难度:一般