组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
共计 79 道试题
1 . 公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现了黄金分割约为0.618,这一数值也可以表示为m=2sin 18°,若m2n=4,则=(       
A.8B.4
C.2D.1
2020-08-21更新 | 837次组卷 | 19卷引用:宁夏银川一中2018届高三第五次月考数学(理)试题
2 . 公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现0.618就是黄金分割,这是一个伟大的发现,这一数值也表示为,若,则___________.
2021-05-03更新 | 610次组卷 | 22卷引用:宁夏贺兰县景博中学2021届高三上学期统练(四)数学(理)试题
3 . 已知函数
(1)用五点作图在下面坐标系中做出上述函数在的图象.(请先列表,再描点,图中每个小矩形的宽度为
(2)请描述上述函数图象可以由函数y=sinx怎样变换而来?
4 . 某校从参加高一年级期中考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求分数在内的频率,并补全这个频率分布直方图;
(2)用分层抽样的方法在分数段为的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取人,求至多有人在分数段的概率.
2020-12-14更新 | 186次组卷 | 12卷引用:宁夏青铜峡市高级中学2020-2021学年高二12月月考数学(理)试题
5 . 某校学生会开展了一次关于“垃圾分类”问卷调查的实践活动,组织部分学生干部在几个大型小区随机抽取了共50名居民进行问卷调查.调查结束后,学生会对问卷结果进行了统计,并将其中一个问题“是否知道垃圾分类方法(知道或不知道)”的调查结果统计如下表:
年龄(岁)
频数141286
知道的人数348732


(1)求上表中的的值,并补全右图所示的的频率直方图;
(2)在被调查的居民中,若从年龄在的居民中各随机选取1人参加垃圾分类知识讲座,求选中的两人中仅有一人不知道垃圾分类方法的概率.
6 . 某班同学利用国庆节进行社会实践,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:

组数

分组

低碳族的人数

占本组的频率

第一组

120

0.6

第二组

195

第三组

100

0.5

第四组

0.4

第五组

30

0.3

第六组

15

0.3

(1)补全频率分布直方图并求的值;
(2)从年龄段在的“低碳族”中采用分层抽样法抽取人参加户外低碳体验活动,其中选取人作为领队,求选取的名领队中恰有人年龄在岁的概率.
2017-10-07更新 | 729次组卷 | 26卷引用:2015-2016学年宁夏石嘴山三中高二上第一次月考数学试卷
7 . 某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题:

(1)求分数内的频率,并补全这个频率分布直方图;
(2)从频率分布直方图中,估计本次考试成绩的中位数;
(3)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.
2018-05-01更新 | 3483次组卷 | 14卷引用:宁夏青铜峡市高级中学(吴忠中学青铜峡分校)2019-2020学年高二下学期期中考试数学(理)试题
8 . 如图所示,在长方体中,,点是棱上的一个动点,若平面交棱于点,给出下列命题:

①四棱锥 的体积恒为定值;
②存在点,使得平面;
③对于棱上任意一点,在棱上均有相应的点,使得平面;
④存在唯一的点,使得截面四边形的周长取得最小值.
其中真命题的是_____________ . (填写所有正确答案的序号)
9 . 在某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各个选项中,一定符合上述指标的是__________(填写序号).
①平均数   ②标准差   ③平均数且极差小于或等于2;
④平均数且标准差          ⑤众数等于1且极差小于或等于4.
10 . 市教育部门为研究高中学生的身体素质与课外体育锻炼时间的关系,对该市某校名高中学生的课外体育锻炼平均每天锻炼的时间进行了调查,数据如下表:
平均每天锻炼的时间(分钟)
总人数
将学生日均课外体育锻炼时间在内的学生评价为“课外体育达标”.
(1)请根据上述表格中的统计数据填写下面列联表,并通过计算判断是否能在犯错误的概率不超过的前提下认为“课外体育达标”与性别有关;
课外体育不达标课外体育达标总计
总计
(2)从上述课外体育不达标的学生中,按性别用分层抽样的方法抽取名学生,再从这名学生中随机抽取人了解他们锻炼时间偏少的原因,记所抽取的人中男生的人数为随机变量,求的分布列和数学期望;
(3)将上述调查所得到的概率视为概率来估计全市的情况,现在从该市所有高中学生中抽取名学生,求其中恰好有名学生课外体育达标的概率.
附:参考公式及临界值表:,其中.
共计 平均难度:一般