组卷网 > 知识点选题 > 直线与椭圆的位置关系
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 295 道试题
1 . 如图所示,已知椭圆与直线.点在直线上,由点引椭圆的两条切线AB为切点,是坐标原点.

(1)若点为直线轴的交点,求的面积
(2)若为垂足,求证:存在定点,使得为定值.(注:椭圆在其上一点处的切线方程为
2023-12-20更新 | 336次组卷 | 2卷引用:山东省德州市第一中学2024届高三上学期12月阶段性测试数学试题
2 . 已知椭圆,其离心率为,直线被椭圆截得的弦长为
(1)求椭圆的标准方程.
(2)圆的切线交椭圆两点,切点为,求证:是定值.
2023-12-19更新 | 934次组卷 | 2卷引用:2024年普通高等学校招生全国统一考试·信息卷理科数学(六)
3 . 已知椭圆的离心率为,上下顶点分别为.过点,且斜率为的直线轴相交于点,与椭圆相交于两点.
(1)求椭圆的方程.
(2)若,求的值.
(3)是否存在实数,使直线平行于直线?证明你的结论.
2023-12-18更新 | 130次组卷 | 1卷引用:山东省青岛市莱西市2023-2024学年高二上学期11月期中数学试题
4 . 已知椭圆经过点,且离心率为,过椭圆右焦点为,的直线E交于两点,点的坐标为.
(1)求椭圆的方程;
(2)设为坐标原点,证明:
2023-12-16更新 | 642次组卷 | 3卷引用:福建省华安县第一中学2023-2024学年高二上学期第二次月考(12月)数学试题
2023高三·全国·专题练习
5 . 已知定圆,动圆过点且与圆A相切,记动圆圆心的轨迹为
(1)求曲线的方程;
(2)若点为曲线上任意一点,证明直线与曲线恒有且只有一个公共点.
(3)由(2)你能否得到一个更一般的结论?并且对双曲线写出一个类似的结论(皆不必证明).
2023-12-15更新 | 150次组卷 | 1卷引用:考点20 常用的二级结论的应用 2024届高考数学考点总动员【练】
6 . 已知椭圆的两个焦点,P上一动点,射线上取点MN,满足另交于点Q,已知PQ长度的取值范围为.
(1)证明:直线MN过定点,并求出该定点坐标;
(2)若直线MN另交AB,求的取值范围.
2023-12-15更新 | 474次组卷 | 1卷引用:考点20 常用的二级结论的应用 2024届高考数学考点总动员【练】
7 . 在平面直角坐标系中,椭圆的右顶点和上顶点分别为,点是直线上的动点,设直线斜率分别为.
(1)求椭圆的离心率;
(2)求证:为定值;
(3)若直线与椭圆的另一个交点分别为,试判断直线与直线的位置关系.
2023-12-15更新 | 233次组卷 | 1卷引用:陕西省渭南市大荔县2023-2024学年高二上学期期中数学试题
8 . 如图,已知椭圆的左右顶点分别是,焦点,其中,设点,连接交椭圆于点,坐标原点是

(1)求椭圆的离心率;
(2)证明:
(3)设三角形的面积为,四边形的面积为,若的最小值为1,求椭圆的标准方程.
2023-12-15更新 | 265次组卷 | 1卷引用:天津市第五十五中学2023-2024学年高二上学期期中数学试题
9 . 已知椭圆,一组平行直线的斜率是
(1)求这组直线何时与椭圆有两个公共点?
(2)当它们与椭圆有两个公共点时,证明这些直线被椭圆截得的线段的中点在同一条直线上.
2023-12-15更新 | 133次组卷 | 1卷引用:海南省琼海市海桂中学2023-2024学年高二上学期期中考试数学试题(B卷)
10 . 已知椭圆C过点,且焦距为
(1)求C的方程;
(2)已知点E为线段上一点,且直线CGH两点.证明:
2023-12-15更新 | 216次组卷 | 1卷引用:福建省莆田市擢英中学2023-2024学年高二上学期期中考试数学试题
共计 平均难度:一般