组卷网 > 章节选题 > 必修1
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 80 道试题
1 . 定义:若函数在某一区间D上任取两个实数,且,都有,则称函数在区间D上具有性质L
(1)写出一个在其定义域上具有性质L的对数函数(不要求证明).
(2)判断函数在区间上是否具有性质L?并用所给定义证明你的结论.
(3)若函数在区间上具有性质L,求实数a的取值范围.
2021-03-21更新 | 599次组卷 | 3卷引用:湖南师大附中2019-2020学年高一下学期第二次大练习数学试题
2 . 已知函数.
(1)求证:是奇函数并求的单调区间;
(2)分别计算的值,由此概括出涉及函数的对所有不等于零的实数都成立的一个式,并加以证明.
3 . 设函数对任意的实数都有,且当时,.
(1)在你学过的函数中,有没有满足上述条件的函数?若有,试举一例;
(2)试探求的值,并写出过程;
(3)求证:当时,
(4)试猜想的单调性,并证明你的结论.
2019-10-30更新 | 128次组卷 | 1卷引用:沪教版 高一年级第一学期 领航者 第三章 单元测试
解答题-证明题 | 较难(0.4) |
名校
4 . 对于正整数集合,如果去掉其中任意一个元素之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合和谐集”.
)判断集合是否是和谐集(不必写过程).
)请写出一个只含有个元素的和谐集,并证明此集合为和谐集”.
)当时,集合,求证:集合不是和谐集”.
2018-07-02更新 | 1554次组卷 | 8卷引用:【全国百强校】北京东城北京二中2017-2018学年高二上学期期中考试数学(理)试题
5 . 如果函数在区间I上是减函数,而函数在区间I上是增函数,那么称函数是区间I上“缓减函数”,区间I叫“缓减区间”.可以证明函数的单调增区间为;单调减区间为.若函数是区间I上“缓减函数”,则下列区间中为函数的“缓减函数区间”的是(       
A.B.
C.D.
2021-08-25更新 | 562次组卷 | 2卷引用:江苏省苏州市吴中区2020-2021学年高一上学期期中数学试题
6 . 已知函数,当时,的图象如图.

(1)判断并证明函数的奇偶性;
(2)写出函数的单调区间(直接写出结果);
(3)试讨论函数在区间上的最大值.
2022-01-03更新 | 845次组卷 | 2卷引用:北京市日坛中学2020-2021学年高一上学期期中考试数学试题
7 . 已知函数的定义域为,且对任意 ,都有且当时,恒成立.
(1)证明:函数是奇函数;
(2)在定义域上单调递减;
(3),求的取值范围.
2021-09-07更新 | 3175次组卷 | 10卷引用:贵州省黔西南州同源中学2020-2021学年高一上学期期中教学质量检测数学试题
15-16高一上·海南省直辖县级单位·期中
8 . 已知函数,且
(1)证明函数上是增函数;
(2)求函数上的最大值和最小值.
2020-10-30更新 | 1469次组卷 | 6卷引用:【南昌新东方】江西省南昌市南昌县莲塘一中2020-2021学年高一上学期第一次月考数学试题
9 . 已知函数是定义域为上的奇函数.
(1)求的值;
(2)用定义法证明函数的单调性,并求不等式的解集;
(3)若上的最小值为,求的值.
2021-02-02更新 | 1157次组卷 | 6卷引用:沪教版(2020) 一轮复习 堂堂清 第二单元 综合练习(一)
10 . 已知函数为定义在上的奇函数,且
(1)求的值;
(2)证明:函数在区间单调递增;
(3)当时,函数在区间上的值域为,求实数的值.
2020-04-08更新 | 479次组卷 | 1卷引用:湘赣粤名校2019-2020学年高一10月联考数学试题
共计 平均难度:一般