组卷网 > 章节选题 > 选修2-1
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 3797 道试题
1 . 已知双曲线G的中心为坐标原点,离心率为,左、右顶点分别为.
(1)求的方程;
(2)过右焦点的直线lG的右支交于MN两点,若直线交于点
(i)证明:点在定直线上:
(ii)若直线交于点,求证:
2 . n个有次序的实数,…,所组成的有序数组称为一个n维向量,其中称为该向量的第i个分量.特别地,对一个n维向量,若,称n维信号向量.设,则的内积定义为,且.
(1)直接写出4个两两垂直的4维信号向量;
(2)证明:不存在10个两两垂直的10维信号向量;
(3)已知k个两两垂直的2024维信号向量,…,满足它们的前m个分量都是相同的,求证:.
2024-04-01更新 | 222次组卷 | 1卷引用:江苏省洪泽中学等七校2023-2024学年高二下学期第一次联考数学试卷
22-23高二下·四川遂宁·阶段练习
3 . 已知抛物线C,过点的直线l交抛物线交于AB两点,抛物线在点A处的切线为,在点B处的切线为,直线交于点M.
(1)设直线的斜率分别为直线,求证:
(2)证明:点M在定直线上;
(3)设线段AB的中点为N,求的取值范围.
2023-09-24更新 | 701次组卷 | 4卷引用:专题突破卷23 圆锥曲线大题归类
4 . 如图,在三棱柱中,平面分别为的中点,.

(1)求证:平面
(2)求平面与直线所成角的正弦值;
(3)证明:直线与平面相交.
2024-04-27更新 | 224次组卷 | 1卷引用:湖北省孝感市重点高中教科研协作体2023-2024学年高二下学期4月期中考试数学试题
5 . 已知椭圆经过点,且焦距为
(1)求椭圆的方程;
(2)设椭圆的左、右顶点分别为,点为椭圆上异于的动点,设交直线于点,连接交椭圆于点,直线的斜率分别为
①求证:为定值;
②证明:直线经过轴上的定点,并求出该定点的坐标.
2024-05-09更新 | 135次组卷 | 1卷引用:海南省琼海市嘉积中学2023-2024学年高二下学期高中教学第二次大课堂练习数学试题
6 . 已知动圆过定点且与直线相切,记圆心的轨迹为曲线
(1)已知两点的坐标分别为,直线的斜率分别为,证明:
(2)若点是轨迹上的两个动点且,设线段的中点为,圆与动点的轨迹交于不同于的三点,求证:的重心的横坐标为定值.
2024-05-09更新 | 548次组卷 | 2卷引用:湖南省岳阳市2024届高三教学质量监测(三)数学试题
7 . 已知双曲线的方程为,虚轴长为2,点上.
(1)求双曲线的方程;
(2)过原点的直线与交于两点,已知直线和直线的斜率存在,证明:直线和直线的斜率之积为定值;
(3)过点的直线交双曲线两点,直线轴的交点分别为,求证:的中点为定点.
8 . 如图,在四棱锥中,侧棱平面ABCD,底面四边形ABCD是矩形,,点MN分别为棱PBPD的中点,点E在棱AD上,.
   
(1)求证:直线平面BNE
(2)从下面①②两个条件中选取一个作为已知,证明另外一个成立.
①平面PAB与平面PCD的交线l与直线BE所成角的余弦值为
②二面角的余弦值为.
注:若选择不同的组合分别作答,则按第一个解答计分.
2023-05-23更新 | 940次组卷 | 5卷引用:第五章 破解立体几何开放探究问题 专题二 立体几何开放题的解法 微点3 立体几何开放题的解法综合训练【培优版】
9 . 已知点在双曲线上.
(1)双曲线上动点Q处的切线交的两条渐近线于两点,其中O为坐标原点,求证:的面积是定值;
(2)已知点,过点作动直线与双曲线右支交于不同的两点,在线段上取异于点的点,满足,证明:点恒在一条定直线上.
2023-05-17更新 | 1070次组卷 | 4卷引用:专题突破卷23 圆锥曲线大题归类
10 . 如图,在三棱柱中,平面平面边长为8的正方形,.
   
(1)求证:平面
(2)求二面角的余弦值;
(3)证明:在线段上存在点,使得,并求的值.
2023-12-25更新 | 248次组卷 | 2卷引用:专题13 空间向量的应用10种常见考法归类(3)
共计 平均难度:一般