组卷网 > 章节选题 > 选修2-2
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 276 道试题
1 . 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.
阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察;(2)整体设元;(3)整体代入;(4)整体求和等.
例如,,求证:.
证明:原式.
波利亚在《怎样解题》中指出:“当你找到第一个藤菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征.
阅读材料二:基本不等式,当且仅当时等号成立,它是解决最值问题的有力工具.
例如:在的条件下,当x为何值时,有最小值,最小值是多少?
解:∵,∴,即,∴
当且仅当,即时,有最小值,最小值为2.
请根据阅读材料解答下列问题
(1)已知如,求下列各式的值:
___________.
___________.
(2)若,解方程.
(3)若正数ab满足,求的最小值.
2021-10-29更新 | 526次组卷 | 3卷引用:江苏省南通中学2020-2021学年高一上学期开学考试数学试题
2 . 曲线的曲率定义如下:若的导函数,令,则曲线在点处的曲率.已知函数,且在点处的曲率
(1)求的值,并证明:当时,
(2)若,且,求证:
2021-05-02更新 | 786次组卷 | 4卷引用:湖南省永州市2021届高三下学期三模数学试题
3 . 已知函数,其中a为非零常数.
讨论的极值点个数,并说明理由;
证明:在区间内有且仅有1个零点;的极值点,的零点且,求证:
2020-01-30更新 | 1028次组卷 | 7卷引用:2020届湖北省黄冈市高三上学期期末数学(理)试题
4 . 已知函数
(1)若曲线在点处的切线方程为,求的值;
(2)当时,求证:
(3)设函数,其中为实常数,试讨论函数的零点个数,并证明你的结论.
5 . 已知函数.
(Ⅰ)判断零点的个数,并证明结论;
(Ⅱ)已知的三个顶点都在函数的图象上.且横坐标依次成等差数列,求证:是钝角三角形.但不可能是等腰三角形.
2019-09-30更新 | 520次组卷 | 1卷引用:【全国百强校】福建省厦门双十中学2020届高三上学期开学考试数学(理)试题
6 . 完成下列证明:
(Ⅰ)求证:
(Ⅱ)若,求证:.
7 . 已知函数为自然对数的底数),的导数.
(1)当时,求证:
(2)是否存在整数,使得对一切恒成立?若存在,求出的最大值,并证明你的结论;若不存在,也请说明理由.
2020-03-22更新 | 427次组卷 | 4卷引用:2020届福建省福州第一中学高三下学期教学反馈检测数学(理)试题
8 . 已知函数,其中
(Ⅰ)讨论的单调性;
(Ⅱ)当时,证明:
(Ⅲ)求证:对任意正整数n,都有(其中e≈2.7183为自然对数的底数)
9 . 用反证法证明命题①:“已知,求证:”时,可假设“”;命题②:“若,则”时,可假设“”.以下结论正确的是
A.①与②的假设都错误B.①与②的假设都正确
C.①的假设正确,②的假设错误D.①的假设错误,②的假设正确
10 . 已知定义在上的函数
(1)求的极大值点;
(2)证明:对任意
2024-04-06更新 | 749次组卷 | 1卷引用:湖南省长沙市第一中学2024届高三下学期月考(七)数学试题
共计 平均难度:一般