组卷网>知识点选题>第十一章 概率与统计
显示知识点
显示答案
| 共计 12543 道试题
1 . 若关于某设备的使用年限x(年)和所支出的维修费y(万元)有如下统计资料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

若由资料知,yx呈线性相关关系.
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程
(2)yx呈正相关还是负相关?
(3)估计使用年限为10年时,试求维修费用约是多少?(精确到两位小数)
解答题 | 较难(0.4) |
2 . 在平面直角坐标系xOy中,设点集={(ij)|i=0,1,2,…,nj=0,1,2;nN*}.从集合中任取两个不同的点,用随机变量X表示它们之间的距离.
(1)当n=1时,求X的概率分布;
(2)对给定的正整数n(n≥3),求概率(用n表示).
更新:2021/12/07组卷:7
解答题 | 一般(0.65) | 2022·全国·高三专题练习
3 . 某工厂在疫情形势好转的情况下,复工后的前5个月的利润情况如下表所示:

第1个月

第2个月

第3个月

第4个月

第5个月

利润(单位:万元)

1

11

27

51

80


设第i个月的利润为y万元.
(1)根据表中数据,求y关于i的方程的值要求保留小数点后四位有效数字);
(2)根据已知数据求得回归方程后,为验证该方程的可靠性,可用一个新数据加以验证,方法如下:先计算新数据对应的残差,再计算,若,则说明该方程是可靠的,否则说明不可靠.现已知该厂第6个月的利润为120万元,是判断(1)中求得的回归方程是否可靠,说明你的理由.
参考数据:,取
附:回归直线的斜率和截距的最小二乘估计分别为
4 . 某公司生产了一批小零件,其综合质量指标值X服从正态分布,现从中随机抽取该小零件2000个,估计综合质量指标值位于的零件个数为_____________
附:若,则
5 . 某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:


1

2

3

4

5

6

7

8


112

61


35


28

25

24

根据以上数据,绘制了散点图.观察散点图,两个变量不具有线性相关关系,现考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为的相关系数.

(1)用反比例函数模型求关于的回归方程;
(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到,并用其估计产量为10千件时每件产品的非原料成本.
参考数据:













360




参考公式:对于一组数据,其回归直线的斜率和截距的最小一乘估计分别为:,相关系数
6 . 年8月11日,国家主席习近平同志对制止餐饮浪费行为作出重要指示,他指出,餐饮浪费现象,触目惊心,令人痛心!“谁知盘中餐,粒粒皆辛苦”,尽管我国粮食生产连年丰收,但对粮食安全还是始终要有危机意识,今年全球新冠肺炎疫情所带来的影响更是给我们敲响了警钟,某市有关部门为了宣传“节约型社会”,面向该市市民开展了一次网络问卷调查,目的是了解人们对这一倡议的关注度和支持度,得到参与问卷调查中的2000人的得分数据.据统计此次问卷调查的得分(满分:100分)服从正态分布,则( )
[附:若随机变量服从正态分布,则
A.B.C.D.
填空题 | 容易(0.94) | 2022·全国·高三专题练习
7 . 袋中装有一些大小相同的球,其中标号为1号的球1个,标号为2号的球2个,标号为3号的球3个,,标号为号的球个.现从袋中任取一球,所得号数为随机变量,若,则______.
更新:2021/12/06组卷:21
解答题 | 较易(0.85) | 2022·全国·高三专题练习
8 . 甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪80元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成6元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表:
甲公司送餐员送餐单数频数表

送餐单数

38

39

40

41

42

天数

10

15

10

10

5


乙公司送餐员送餐单数频数表

送餐单数

38

39

40

41

42

天数

5

10

10

20

5


(1)现从甲公司记录的50天中随机抽取3天,求这3天送餐单数都不小于40的概率;
(2)若将频率视为概率,回答下列两个问题:
①记乙公司送餐员日工资为(单位:元),求的分布列和数学期望;
②小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由.
更新:2021/12/06组卷:29
9 . 记抛物线轴所围成的平面区域为,该抛物线与直线所围成的平面区域为,向区域内随机抛掷一点,则点落在区域内的概率为_________.
10 . 已知随机变量服从正态分布,则( )
A.随机变量的均值为10B.随机变量的方差为10
C.D.