组卷网 > 章节选题 > 选修2-3
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 247 道试题
1 . 新高考数学试卷出现多项选择题,即每小题的四个选项中,有多项符合题目要求,全部选对得6分,部分选对得部分分,有选错的得0分.若正确答案为两项,每对一项得3分:若正确答案为三项,每对一项得2分;
(1)学生甲在作答某题时,对四个选项作出正确判断、判断不了(不选)和错误判断的概率如下表:
选项作出正确判断判断不了(不选)作出错误判断
A0.80.10.1
B0.70.10.2
C0.60.30.1
D0.50.30.2
若此题的正确选项为AC.求学生甲答此题得6分的概率:
(2)某数学小组研究发现,多选题正确答案是两个选项的概率为,正确答案是三个选项的概率为).现有一道多选题,学生乙完全不会,此时他有两种答题方案:Ⅰ.随机选一个选项;Ⅱ.随机选两个选项.
①若,且学生乙选择方案Ⅰ,分别求学生乙本题得0分、得2分的概率.
②以本题得分的数学期望为决策依据,p的取值在什么范围内唯独选择方案Ⅰ最好?
2024-09-02更新 | 445次组卷 | 1卷引用:广东省深圳市红岭中学(红岭教育集团)2025届高三上学期第一次统一考试数学试卷
2 . 将这七个数随机地排成一个数列,记第i项为,则下列说法正确的是(       
A.若,则这样的数列共有360个
B.若该数列恰好先增后减,则这样的数列共有64个
C.若所有的奇数不相邻,所有的偶数也不相邻,则这样的数列共有144个
D.若,则这样的数列共有71个
2024-08-07更新 | 326次组卷 | 1卷引用:十五校教育集团2025届高三鄂豫皖五十三校8月联考数学试题
3 . 三个人猜拳决定胜利者,三个人分别可以出“石头”,“剪刀”,“布”,其中“石头”赢“剪刀”,“剪刀”赢“布”,“布”赢“石头”,例如,当一个人出“布”,另两个人出“石头”时,只用一回正好决定胜利者;当一人出“石头”,另两人出“布”时,则淘汰出“石头”的人,三人猜拳输的人被淘汰,直到决出一个胜利者为止.
(1)求一次猜拳决出胜利者的概率;
(2)求在第回猜拳决出胜利者的概率.
2024-06-22更新 | 523次组卷 | 4卷引用:黑龙江省2024届高三冲刺卷(四)数学试卷
4 . 已知函数随机变量,随机变量的期望为.
(1)当时,求
(2)当时,求的表达式.
2024-06-16更新 | 411次组卷 | 4卷引用:河南省部分重点高中2023-2024学年高三下学期5月联考数学试卷 (新高考)
5 . 切比雪夫不等式是19世纪俄国数学家切比雪夫(1821.5~1894.12)在研究统计规律时发现的,其内容是:对于任一随机变量,若其数学期望和方差均存在,则对任意正实数,有.根据该不等式可以对事件的概率作出估计.在数字通信中,信号是由数字“0”和“1”组成的序列,现连续发射信号次,每次发射信号“0”和“1”是等可能的.记发射信号“1”的次数为随机变量,为了至少有的把握使发射信号“1”的频率在区间内,估计信号发射次数的值至少为______.
2024-06-11更新 | 758次组卷 | 9卷引用:辽宁省沈阳市第二中学2024届高三第五次模拟考试数学试题
6 . 在足球比赛中,有时需通过点球决定胜负.
(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将(也称为守门员)也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有的可能性扑不到球.不考虑其它因素,在一次点球大战中,求门将在前三次扑到点球的个数的分布列和期望;
(2)好成绩的取得离不开平时的努力训练,甲丙三名前锋队员在某次传接球的训练中,球从甲脚下开始,等可能地随机传向另外人中的 人,接球者接到球后再等可能地随机传向另外人中的人,如此不停地传下去,假设传出的球都能接住.记第次传球之前球在甲脚下的概率为,易知
① 试证明:为等比数列;
② 设第次传球之前球在乙脚下的概率为,比较的大小.
2024-06-08更新 | 706次组卷 | 3卷引用:2024届山东省泰安肥城市高考仿真模拟(二)数学试题
7 . 知识卡片:一般地,如果是区间上的连续函数,并且,那么.这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.当时,有如下表达式:,两边同时积分得:,从而得到如下等式:请根据以上材料所蕴含的数学思想方法,由二项式定理计算:_______.
8 . 甲、乙两同学进行射击比赛,已知甲射击一次命中的概率为,乙射击一次命中的概率为,比赛共进行n轮次,且每次射击结果相互独立,现有两种比赛方案,方案一:射击n次,每次命中得2分,未命中得0分;方案二:从第一次射击开始,若本次命中,则得6分,并继续射击;若本次未命中,则得0分,并终止射击.
(1)设甲同学在方案一中射击n轮次总得分为随机变量是,求
(2)设乙同学选取方案二进行比赛,乙同学的总得分为随机变量,求
(3)甲同学选取方案一、乙同学选取方案二进行比赛,试确定N的最小值,使得当时,甲的总得分期望大于乙.
2024-06-03更新 | 316次组卷 | 1卷引用:2024年辽宁省普通高等学校招生全国统一考试(模拟1)数学试题
9 . 某人在次射击中击中目标的次数为,其中,击中奇数次为事件,则(       
A.若,则取最大值时
B.当时,取得最小值
C.当时,随着的增大而增大
D.当时,随着的增大而减小
2024-06-01更新 | 428次组卷 | 22卷引用:山东省泰安肥城市2023届高考适应性训练数学试题(三)
10 . 第二次世界大战期间,了解德军坦克的生产能力对盟军具有非常重要的战略意义.已知德军的每辆坦克上都有一个按生产顺序从1开始的连续编号.假设德军某月生产的坦克总数为N,随机缴获该月生产的n辆()坦克的编号为,…,,记,即缴获坦克中的最大编号.现考虑用概率统计的方法利用缴获的坦克编号信息估计总数N.
甲同学根据样本均值估计总体均值的思想,用估计总体的均值,因此,得,故可用作为N的估计.
乙同学对此提出异议,认为这种方法可能出现的无意义结果.例如,当时,若,则,此时.
(1)当时,求条件概率
(2)为了避免甲同学方法的缺点,乙同学提出直接用M作为N的估计值.当时,求随机变量M的分布列和均值
(3)丙同学认为估计值的均值应稳定于实际值,但直观上可以发现N存在明确的大小关系,因此乙同学的方法也存在缺陷.请判断N的大小关系,并给出证明.
共计 平均难度:一般