解题方法
1 . 已知函数,.
(1)若是方程的根,证明是方程的根;
(2)设方程,的根分别是,,求证:.
(1)若是方程的根,证明是方程的根;
(2)设方程,的根分别是,,求证:.
您最近一年使用:0次
解题方法
2 . 已知连续不断函数,.
(1)求证:函数在区间上有且只有一个零点;
(2)现已知函数在上有且只有一个零点(不必证明),记和在上的零点分别为,试求的值.
(1)求证:函数在区间上有且只有一个零点;
(2)现已知函数在上有且只有一个零点(不必证明),记和在上的零点分别为,试求的值.
您最近一年使用:0次
2021-01-31更新
|
290次组卷
|
3卷引用:湖北省鄂东南新高考联盟2020-2021学年高一上学期期末联考数学试题
名校
3 . 已知函数
(1)若,求证:函数恰有一个正零点;(用图像法证明不给分)
(2)若函数恰有三个零点,求实数取值范围.
(1)若,求证:函数恰有一个正零点;(用图像法证明不给分)
(2)若函数恰有三个零点,求实数取值范围.
您最近一年使用:0次
2020-11-24更新
|
1259次组卷
|
6卷引用:卷12 指数函数与对数函数 章末复习单元检测(难)-2021-2022学年高一数学单元卷模拟(易中难)(2019人教A版必修第一册)
(已下线)卷12 指数函数与对数函数 章末复习单元检测(难)-2021-2022学年高一数学单元卷模拟(易中难)(2019人教A版必修第一册)(已下线)专题6.2 方程的根与函数零点 B卷-2021-2022学年高一数学单元卷模拟(易中难)(2019人教A版必修第一册)河南省南阳市第一中学校2021-2022学年高一上学期第四次月考数学试题山西省大同市第一中学2021-2022学年高一上学期12 月学情检测数学试题(已下线)专题6.2函数零点与方程根的分布 B卷-2021-2022学年高一数学单元卷模拟(易中难)(人教A版2019必修第一册)广东省深圳市2019-2020学年高一上学期期末数学试题
名校
4 . 若函数是上的偶函数,是上的奇函数,且满足.
(1)求,的解析式;
(2)令,证明函数有且只有个零点.
(1)求,的解析式;
(2)令,证明函数有且只有个零点.
您最近一年使用:0次
2024-06-19更新
|
394次组卷
|
5卷引用:福建省八县(市)一中2020-2021学年高二下学期期末联考数学试题
福建省八县(市)一中2020-2021学年高二下学期期末联考数学试题重庆市清华中学2022届高三上学期7月月考数学试题福建省永泰县第一中学2020-2021学年高二下学期期末数学试题(已下线)专题07函数期末8种常考题型归类【好题汇编】-备战2023-2024学年高二数学下学期期末真题分类汇编(人教B版2019)(已下线)专题09 导数与零点、不等式综合常考题型归类--高二期末考点大串讲(人教B版2019选择性必修第三册)
5 . 已知函数.
(1)若且为偶函数,求实数的值;
(2),求解函数的零点,并证明其中大于1的那个零点是无理数;
(3)若,且,设的最小值为,求函数及其定义域,并证明其在定义域内严格单调递减.
(1)若且为偶函数,求实数的值;
(2),求解函数的零点,并证明其中大于1的那个零点是无理数;
(3)若,且,设的最小值为,求函数及其定义域,并证明其在定义域内严格单调递减.
您最近一年使用:0次
解题方法
6 . 设函数.
(1)证明:函数为奇函数;
(2)求函数的零点.
(1)证明:函数为奇函数;
(2)求函数的零点.
您最近一年使用:0次
7 . 已知函数在定义域上严格单调递增.
(1)证明:函数至多存在一个零点.
(2)若函数存在零点,证明:存在,使得对于任意恒成立的充分必要条件是.
(1)证明:函数至多存在一个零点.
(2)若函数存在零点,证明:存在,使得对于任意恒成立的充分必要条件是.
您最近一年使用:0次
解题方法
8 . 已知实系数三次函数.
(1)求证:是函数的零点;
(2)a与b满足什么关系时,函数还有其他零点?
(3)如果是函数的零点,求证:也是函数的零点.
(1)求证:是函数的零点;
(2)a与b满足什么关系时,函数还有其他零点?
(3)如果是函数的零点,求证:也是函数的零点.
您最近一年使用:0次
2021-12-02更新
|
136次组卷
|
2卷引用:沪教版(2020) 必修第一册 堂堂清 第五章 5.3(4)函数的应用
9 . 已知函数,,函数是函数的反函数.
(1)求函数的解析式,并写出定义域;
(2)设,判断函数在区间上的单调性,并说明理由;
(3)设,求证:函数在区间内必有唯一的零点,并求出该零点.(精确到).
(1)求函数的解析式,并写出定义域;
(2)设,判断函数在区间上的单调性,并说明理由;
(3)设,求证:函数在区间内必有唯一的零点,并求出该零点.(精确到).
您最近一年使用:0次
名校
10 . 已知函数(为常数),若1为函数的零点.
(1)求的值;
(2)证明函数在上是单调增函数;
(1)求的值;
(2)证明函数在上是单调增函数;
您最近一年使用:0次
2023-02-25更新
|
186次组卷
|
2卷引用:湖北省武汉市第四十九中学2021-2022学年高一上学期期中模拟考试数学试题