解题方法
1 . 设(a为实常数),与的图像关于y轴对称.
(1)若函数为奇函数,求a的取值;
(2)当a=0时,若关于x的方程有两个不等实根,求m的范围;
(3)当|a|<1时,求方程的实数根个数,并加以证明.
(1)若函数为奇函数,求a的取值;
(2)当a=0时,若关于x的方程有两个不等实根,求m的范围;
(3)当|a|<1时,求方程的实数根个数,并加以证明.
您最近一年使用:0次
名校
2 . 已知函数 , 若有四个互不相等的实数根,且. 则的取值范围是( ).
A. | B. | C. | D. |
您最近一年使用:0次
2019-01-15更新
|
750次组卷
|
3卷引用:四川省宜宾第三中学2018-2019学年高一11月月考数学试题
名校
解题方法
3 . 若关于x的不等式的解集为,则实数a的范围是______ .
您最近一年使用:0次
2022-12-24更新
|
609次组卷
|
3卷引用:上海市进才中学2022-2023学年高一上学期12月月考数学试题
上海市进才中学2022-2023学年高一上学期12月月考数学试题(已下线)5.2.3 函数的最值-同步精品课堂(沪教版2020必修第一册)上海市闵行(文绮)中学2023-2024学年高一上学期12月学情调研数学试题
名校
解题方法
4 . 下列命题中正确的是( )
A.已知函数,若函数在区间上是增函数,则的取值范围是 |
B.已知定义在上的偶函数在上单调递增,且,若对恒成立,则实数的取值范围是 |
C.函数,若不等式对恒成立,则范围为. |
D.函数在上的值域为 |
您最近一年使用:0次
23-24高一上·上海浦东新·阶段练习
名校
5 . 已知函数(,常数).
(1)求函数的零点;
(2)根据的不同取值,判断函数的奇偶性,并说明理由;
(3)若函数在上单调递减,求实数的取值范围,证明函数在上有且仅有1个零点.
(1)求函数的零点;
(2)根据的不同取值,判断函数的奇偶性,并说明理由;
(3)若函数在上单调递减,求实数的取值范围,证明函数在上有且仅有1个零点.
您最近一年使用:0次
名校
解题方法
6 . 已知函数,若函数有四个零点,,,,且,则下列正确的是( )
A.的范围 | B.+++的范围 |
C.的取值范围 | D.的范围 |
您最近一年使用:0次
2023-01-11更新
|
1068次组卷
|
4卷引用:安徽省淮北市第一中学2022-2023学年高一上学期期末数学试题
名校
7 . 给出下列四个命题:①命题“”为真,则实数的范围是;②设,则“”是“”的充要条件;③关于的方程,存在实数,使得方程恰有5个不同的实根;④函数的定义域为D,若满足:(1)在D内是单调函数;(2)存在,使得在上的值域为,那么就称函数为“梦想函数”.若函数是“梦想函数”,则t的取值范围是;其中真命题有_________ (填序号)
您最近一年使用:0次
名校
8 . 已知函数,.
(1)若在区间上是单调函数,则的取值范围;
(2)在(1)的条件下,是否存在实数,使得函数与函数的图象在区间上有唯一的交点,若存在,求出的范围,若不存在,请说明理由.
(1)若在区间上是单调函数,则的取值范围;
(2)在(1)的条件下,是否存在实数,使得函数与函数的图象在区间上有唯一的交点,若存在,求出的范围,若不存在,请说明理由.
您最近一年使用:0次
2022-02-17更新
|
606次组卷
|
4卷引用:广东省茂名市化州市第一中学2021-2022学年高一下学期期中数学试题
名校
9 . 设,函数.
(1)若,判断并证明函数的单调性;
(2)若,函数在区间()上的取值范围是(),求的范围.
(1)若,判断并证明函数的单调性;
(2)若,函数在区间()上的取值范围是(),求的范围.
您最近一年使用:0次
2022-02-16更新
|
792次组卷
|
4卷引用:广东省广州市天河区2021-2022学年高一上学期期末数学试题
10 . 设,函数.
(1)若,判断并证明函数的单调性;
(2)若,函数在区间上的取值范围是,求的范围.
(1)若,判断并证明函数的单调性;
(2)若,函数在区间上的取值范围是,求的范围.
您最近一年使用:0次
2022-01-21更新
|
687次组卷
|
2卷引用:浙江省杭州市八县区2021-2022学年高一上学期期末学业水平测试数学试题