名校
解题方法
1 . 下列命题中正确的是( )
A.已知函数,若函数在区间上是增函数,则的取值范围是 |
B.已知定义在上的偶函数在上单调递增,且,若对恒成立,则实数的取值范围是 |
C.函数,若不等式对恒成立,则范围为. |
D.函数在上的值域为 |
您最近一年使用:0次
名校
2 . 已知函数,.
(1)若在区间上是单调函数,则的取值范围;
(2)在(1)的条件下,是否存在实数,使得函数与函数的图象在区间上有唯一的交点,若存在,求出的范围,若不存在,请说明理由.
(1)若在区间上是单调函数,则的取值范围;
(2)在(1)的条件下,是否存在实数,使得函数与函数的图象在区间上有唯一的交点,若存在,求出的范围,若不存在,请说明理由.
您最近一年使用:0次
2022-02-17更新
|
606次组卷
|
4卷引用:广东省茂名市化州市第一中学2021-2022学年高一下学期期中数学试题
名校
3 . 已知函数在区间上是单调函数.
(1)求实数的所有取值组成的集合;
(2)试写出在区间上的最大值;
(3)设,令,若对任意,总有,求的取值范围.
(1)求实数的所有取值组成的集合;
(2)试写出在区间上的最大值;
(3)设,令,若对任意,总有,求的取值范围.
您最近一年使用:0次
2019-11-19更新
|
597次组卷
|
2卷引用:浙江省浙东北联盟(ZDB)2019-2020学年高一上学期期中数学试题
4 . 对于两条平行直线、(在下方)和图象有如下操作:将图象在直线下方的部分沿直线翻折,其余部分保持不变,得到图象;将图象在直线上方的部分沿直线翻折,其余部分保持不变,得到图象:再将图在直线下方的部分沿直线翻折,其余部分保持不变,得到图象;再将图象在直线上方的部分沿直线翻折,其余部分保持不变,得到图象;以此类推…;直到图象上所有点均在、之间(含、上)操作停止,此时称图象为图象关于直线、的“衍生图形”,线段关于直线、的“衍生图形”为折线段.
(1)直线型
平面直角坐标系中,设直线,直线
①令图象为的函数图象,则图象的解析式为
②令图像为的函数图象,请你画出和的图象
③若函数的图象与图象有且仅有一个交点,且交点在轴的左侧,那么的取值范围是_______.
④请你观察图象并描述其单调性,直接写出结果_______.
⑤请你观察图象并判断其奇偶性,直接写出结果_______.
⑥图象所对应函数的零点为_______.
⑦任取图象中横坐标的点,那么在这个变化范围中所能取到的最高点的坐标为(_______,_______),最低点坐标为(_______,_______).
⑧若直线与图象有2个不同的交点,则的取值范围是_______.
⑨根据函数图象,请你写出图象的解析式_______.
(2)曲线型
若图象为函数的图象,
平面直角坐标系中,设直线,直线,
则我们可以很容易得到所对应的解析式为.
①请画出的图象,记所对应的函数解析式为.
②函数的单调增区间为_______,单调减区间为_______.
③当时候,函数的最大值为_______,最小值为_______.
④若方程有四个不同的实数根,则的取值范围为_______.
(3)封闭图形型
平面直角坐标系中,设直线,直线
设图象为四边形,其顶点坐标分别为,,,,四边形关于直线、的“衍生图形”为.
①的周长为_______.
②若直线平分的周长,则_______.
③将沿右上方方向平移个单位,则平移过程中所扫过的面积为_______.
(1)直线型
平面直角坐标系中,设直线,直线
①令图象为的函数图象,则图象的解析式为
②令图像为的函数图象,请你画出和的图象
③若函数的图象与图象有且仅有一个交点,且交点在轴的左侧,那么的取值范围是_______.
④请你观察图象并描述其单调性,直接写出结果_______.
⑤请你观察图象并判断其奇偶性,直接写出结果_______.
⑥图象所对应函数的零点为_______.
⑦任取图象中横坐标的点,那么在这个变化范围中所能取到的最高点的坐标为(_______,_______),最低点坐标为(_______,_______).
⑧若直线与图象有2个不同的交点,则的取值范围是_______.
⑨根据函数图象,请你写出图象的解析式_______.
(2)曲线型
若图象为函数的图象,
平面直角坐标系中,设直线,直线,
则我们可以很容易得到所对应的解析式为.
①请画出的图象,记所对应的函数解析式为.
②函数的单调增区间为_______,单调减区间为_______.
③当时候,函数的最大值为_______,最小值为_______.
④若方程有四个不同的实数根,则的取值范围为_______.
(3)封闭图形型
平面直角坐标系中,设直线,直线
设图象为四边形,其顶点坐标分别为,,,,四边形关于直线、的“衍生图形”为.
①的周长为_______.
②若直线平分的周长,则_______.
③将沿右上方方向平移个单位,则平移过程中所扫过的面积为_______.
您最近一年使用:0次
5 . 对于在区间上有意义的两个函数与,如果对任意的,均有,则称与在上是接近的,否则称与在上是非接近的.现在有两个函数与,现给定区间.
(1)若,判断与是否在给定区间上接近;
(2)若与在给定区间上都有意义,求的取值的集合;
(3)在(2)的条件下,是否存在,使得与在给定区间上是接近的;若存在,求的取值范围;若不存在,请说明理由.
(1)若,判断与是否在给定区间上接近;
(2)若与在给定区间上都有意义,求的取值的集合;
(3)在(2)的条件下,是否存在,使得与在给定区间上是接近的;若存在,求的取值范围;若不存在,请说明理由.
您最近一年使用:0次
名校
解题方法
6 . 设,已知函数的表达式为.
(1)当时,求不等式的解集;
(2)设,若存在,使得函数在区间上的最大值与最小值的差不超过1,求实数的取值范围.
(1)当时,求不等式的解集;
(2)设,若存在,使得函数在区间上的最大值与最小值的差不超过1,求实数的取值范围.
您最近一年使用:0次
名校
7 . 已知函数
(1)若,写出函数在上的单调区间,并求在内的最小值;
(2)设关于对的不等式的解集为 A,且,求实数的取值范围.
(1)若,写出函数在上的单调区间,并求在内的最小值;
(2)设关于对的不等式的解集为 A,且,求实数的取值范围.
您最近一年使用:0次
2023-11-27更新
|
473次组卷
|
2卷引用:江苏省苏州中学校2023-2024学年高一上学期期中数学试卷
名校
解题方法
8 . 已知函数,其中为常数.
(1)当时,解不等式的解集;
(2)当时,写出函数的单调区间;
(3)若在上存在个不同的实数,,使得,求实数的取值范围.
(1)当时,解不等式的解集;
(2)当时,写出函数的单调区间;
(3)若在上存在个不同的实数,,使得,求实数的取值范围.
您最近一年使用:0次
2023-11-17更新
|
434次组卷
|
2卷引用:湖北省十堰市示范高中教联体测评联盟2023-2024学年高一上学期11月联考数学试题
名校
9 . 已知函数,则下列说法正确的是( )
A.若的图象与直线有三个交点,则实数 |
B.若有三个不同实数根,则 |
C.不等式的解集是 |
D.若对任意实数x恒成立,则实数a的取值范围是 |
您最近一年使用:0次
2023-11-14更新
|
847次组卷
|
3卷引用:浙江省宁波市六校联盟2023-2024学年高一上学期11月期中数学试题
名校
解题方法
10 . 设,,函数.
(1)求不等式的解集;
(2)若在上的最大值为,求的取值范围;
(3)当时,对任意的正实数,,不等式恒成立,求的最大值.
(1)求不等式的解集;
(2)若在上的最大值为,求的取值范围;
(3)当时,对任意的正实数,,不等式恒成立,求的最大值.
您最近一年使用:0次