组卷网 > 章节选题 > 必修1
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 36 道试题
解答题-证明题 | 较难(0.4) |
名校
1 . 设为正整数,集合. 任取集合A中的个元素(可以重复),其中.
(1)若,直接写出
(2)对于,证明:
(3)对于某个正整数,若集合A满足:对于A中任意个元素,都有,则称集合A具有性质. 证明:若,集合A具有性质,则,集合A都具有性质.
2024-03-08更新 | 216次组卷 | 1卷引用:北京市海淀区人大附中2024届高三下学期寒假自主复习检测数学试题
2 . 设定义在函数时,的值域为_______;若的最大值为1,则实数的所有取值组成的集合为______.
2024-02-28更新 | 237次组卷 | 2卷引用:北京市西城区北京师范大学附属中学2023-2024学年高三下学期开学测试数学试题
3 . 设,函数给出下列四个结论:
在区间上单调递减;
②当时,存在最大值;
③当时,直线与曲线恰有3个交点;
④存在正数及点,使.
其中所有正确结论的序号是______.
2024-02-18更新 | 417次组卷 | 3卷引用:高三数学开学摸底考 (北京专用)
4 . 已知函数,当时,记函数的最大值为,则的最小值为(       
A.3.5B.4
C.4.5D.5
2024-01-22更新 | 557次组卷 | 4卷引用:高三数学开学摸底考 (北京专用)
解答题-问答题 | 较难(0.4) |
名校
5 . 已知集合,其中,非空集合,记为集合B中所有元素之和,并规定当中只有一个元素时,
(1)若,写出所有可能的集合B
(2)若,且是12的倍数,求集合B的个数;
(3)若,证明:存在非空集合,使得的倍数.
6 . 设,已知由自然数组成的集合,集合,…,的互不相同的非空子集,定义数表:
,其中,设,令,…,中的最大值.
(1)若,且,求
(2)若,集合,…,中的元素个数均相同,若,求的最小值;
(3)若,集合,…,中的元素个数均为3,且,求证:的最小值为3.
2023-07-10更新 | 524次组卷 | 4卷引用:北京市陈经纶中学2023-2024学年高二上学期开学检测数学试题
7 . 对任意正整数n,记集合,若对任意都有,则记
(1)写出集合
(2)证明:对任意,存在,使得
(3)设集合.求证:中的元素个数是完全平方数.
填空题-单空题 | 较难(0.4) |
名校
8 . 设函数的定义域为D,若存在实数,使得对于任意,都有,则称为“严格增函数”,对于“严格增函数”,有以下四个结论:
①“严格增函数”一定在D上严格增;
②“严格增函数”一定是“严格增函数”(其中,且
③函数是“严格增函数”(其中表示不大于x的最大整数)
④函数不是“严格增函数”(其中表示不大于x的最大整数)
其中,所有正确的结论序号是______.
10 . 已知函数,给出下列命题:
(1)无论取何值,恒有两个零点;
(2)存在实数,使得的值域是
(3)存在实数使得的图像上关于原点对称的点有两对;
(4)当时,若的图象与直线有且只有三个公共点,则实数的取值范围是.
其中,所有正确命题的序号是___________.
共计 平均难度:一般