组卷网 > 章节选题 > 必修4
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 400 道试题
1 . 美国数学史家、穆伦堡学院名誉数学教授威廉・邓纳姆在1994年出版的The Mathematical Universe一书中写道:“相比之下,数学家达到的终极优雅是所谓的‘无言的证明’,在这样的证明中一个极好的令人信服的图示就传达了证明,甚至不需要任何解释.很难比它更优雅了.”如图所示正是数学家所达到的“终极优雅”,该图(为矩形)完美地展示并证明了正弦和余弦的二倍角公式,则可推导出的正确选项为(       

A.B.C.D.
今日更新 | 8次组卷 | 1卷引用:2024届新高考数学原创卷3
2 . 水车是古代中国劳动人民发明的灌溉工具,相传为汉灵帝时华岚造出雏形,经三国时孔明改造完善后在蜀国推广使用.作为中国农耕文化的重要组成部分,它体现了中华民族的创造力,为中国农业文明和水利史研究提供了见证.被誉为“水车之都”的兰州建起了一处水车博览园,再现了以前黄河两岸水车林立的壮观景象.如图为一架新制作的水车,其最高点距离水面为18米,最低点在水面下2米,该水车每转一圈,若从水轮左侧距离水面3米的点处开始计算时间(假定水车逆时针方向旋转).

(1)将水轮上的动点距离水面的高度(单位:)表示为时间(单位:)的函数;
(2)在水轮转动的一圈内,有多长时间点距水面的高度超过
7日内更新 | 91次组卷 | 1卷引用:黑龙江省齐齐哈尔市恒昌中学校2023-2024学年高一下学期4月月考数学试卷
2024·全国·模拟预测
3 . 石雕、木雕、砖雕被称为建筑三雕.源远流长的砖雕,由东周瓦当、汉代画像砖等发展而来,明清时代进入巅峰,形成北京、天津、山西、徽州、广东、临夏以及苏派砖雕七大主要流派.苏派砖雕被称为“南方之秀”,是南方地区砖雕艺术的典型代表,被广泛运用到墙壁、门窗、檐廊、栏槛等建筑中.图(1)是一个梅花砖雕,其正面是一个扇环,如图(2),砖雕厚度为6cm,所对的圆心角为直角,则该梅花砖雕的表面积为(单位:)(     

       
A.B.C.D.
7日内更新 | 65次组卷 | 1卷引用:2024年普通高等学校招生全国统一考试·押题卷数学(七)
4 . 我国古代数学家僧一行应用“九服晷影算法”在《大衍历》中建立了晷影长与太阳天顶距的对应数表,这是世界数学史上较早的正切函数表.根据三角学知识可知,晷影长等于表高与太阳天顶距正切值的乘积,即.对同一“表高”测量两次,第一次和第二次太阳天顶距分别为,第二次的“晷影长”是“表高”的3倍,且,则的值为(       
A.B.C.4D.13
7日内更新 | 132次组卷 | 1卷引用:黑龙江省双鸭山市友谊县高级中学2024届高三下学期高考模拟(一)数学试题
5 . 青花瓷,又称白地青花瓷,常简称青花,是中国瓷器的主流品种之一,属釉下彩瓷.原始青花瓷于唐宋已见端倪,成熟的青花瓷则出现在元代景德镇的湖田窑.图一是一个由波涛纹和葡萄纹构成的正六边形青花瓷盘,已知图二中正六边形的边长为2,圆的圆心为正六边形的中心,半径为1,若点在正六边形的边上运动,动点在圆上运动且关于圆心对称,则的取值不可能是(     

A.B.2C.D.3
7日内更新 | 146次组卷 | 1卷引用:吉林省长春市实验中学2023-2024学年高一下学期第一学程(4月)考试数学试题
6 . 某导航通讯的信号可以用函数近似模拟,若函数上有3个零点,则实数的取值范围为(       
A.B.C.D.
7 . 大约在公元222年,赵爽为《周髀算经》一书作注时介绍了“勾股圆方图”,即“赵爽弦图”.如图是某同学绘制的赵爽弦图,其中四边形均为正方形,,则__________.

8 . 重庆荣昌折扇是中国四大名扇之一,荣昌折扇平面图为下图的扇形,其中,动点上(含端点),连结交扇形的弧于点Q,且,则下列说法正确的是(       

A.若,则B.若,则
C.D.
2024-04-19更新 | 196次组卷 | 1卷引用:山东省青岛第一中学2023-2024学年高一下学期4月阶段性检测数学试卷
9 . 著名数学家华罗庚先生被誉为“中国现代数学之父”,他倡导的“0.618优选法”又称黄金分割法在生产和科研实践中得到了非常广泛的应用经研究,黄金分割比还可以表示成,则       
A.4B.2C.1D.
2024-04-13更新 | 142次组卷 | 1卷引用:江苏省徐州市丰县中学2023-2024学年高一下学期学情调研(一)(3月)数学试题
10 . 十七世纪法国数学家被誉为业余数学家之王的皮埃尔·德·费马提出一个著名的几何问题:已知一个三角形,求作一点,使其与这个三角形的三个顶点的距离之和最小.其答案如下:当三角形的三个角均小于时,所求的点为三角形的正等角中心,即该点与三角形三个顶点的连线两两成角;当三角形有一内角大于或等于时,所求的点为三角形最大内角的顶点.在费马问题中所求的点被称为费马点.已知分别是的内角的对边,且,若的费马点,则       
A.-1B.-2C.-3D.
共计 平均难度:一般