组卷网 > 章节选题 > 选修1-2
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 8 道试题
2024·全国·模拟预测
1 . 对于非空集合,定义其在某一运算(统称乘法)“×”下的代数结构称为“群”,简记为.而判断是否为一个群,需验证以下三点:
1.(封闭性)对于规定的“×”运算,对任意,都须满足
2.(结合律)对于规定的“×”运算,对任意,都须满足
3.(恒等元)存在,使得对任意
4.(逆的存在性)对任意,都存在,使得
记群所含的元素个数为,则群也称作“阶群”.若群的“×”运算满足交换律,即对任意,我们称为一个阿贝尔群(或交换群).
(1)证明:所有实数在普通加法运算下构成群
(2)记为所有模长为1的复数构成的集合,请找出一个合适的“×”运算使得在该运算下构成一个群,并说明理由;
(3)所有阶数小于等于四的群是否都是阿贝尔群?请说明理由.
2024-03-07更新 | 701次组卷 | 3卷引用:第九章 复数(压轴题专练)-单元速记·巧练(沪教版2020必修第二册)
2 . 容器中有种粒子,若相同种类的两颗粒子发生碰撞,则变成一颗B粒子;不同种类的两颗粒子发生碰撞,会变成另外一种粒子.例如,一颗A粒子和一颗B粒子发生碰撞则变成一颗C粒子,现有A粒子10颗,B粒子8颗,C粒子9颗,如果经过各种两两碰撞后,只剩1颗粒子.给出下列结论:
①最后一颗粒子可能是A粒子;
②最后一颗粒子可能是B粒子;
③最后一颗粒子可能是C粒子;
其中正确结论的序号是______.(写出所有正确结论的序号)
解答题-问答题 | 困难(0.15) |
名校
3 . 设为正整数,区间(其中)同时满足下列两个条件:①对任意,存在使得;②对任意,存在,使得,其中表示除外的个集合的并集.
(1)若,判断以下两个数列是否满足条件:①;②?(结论不需要证明)
(2)求的最小值;
(3)判断是否存在最大值,若存在,求的最大值;若不存在,说明理由.
2020-07-16更新 | 429次组卷 | 2卷引用:北京市朝阳区人大附中朝阳分校2022-2023学年高一上学期9月月考数学统练试题(1)
17-18高二下·上海宝山·阶段练习
4 . 设是实系数一元二次方程的两个根,若是虚数,是实数,则       
A.B.C.D.
2019-12-07更新 | 3110次组卷 | 4卷引用:第九章 复数(压轴题专练)-单元速记·巧练(沪教版2020必修第二册)
5 . 已知集合并且.定义(例如:).
(1)若,集合A的子集N满足:,且,求出一个符合条件的N
(2)已知集合满足:,其中为给定的常数,求的取值范围.
2019-11-09更新 | 192次组卷 | 1卷引用:上海市实验中学2019-2020学年高一上学期期中质量检测试卷数学试题
6 . 已知数列(其中第一项是,接下来的项是,再接下来的项是,依此类推)的前项和为,下列判断:
的第项;②存在常数,使得恒成立;③;④满足不等式的正整数的最小值是.
其中正确的序号是
A.①③B.①④C.①③④D.②③④
单选题 | 困难(0.15) |
名校
7 . 十七世纪法国数学家费马提出猜想:“当整数时,关于的方程没有正整数解”.经历三百多年,于二十世纪九十年中期由英国数学家安德鲁怀尔斯证明了费马猜想,使它终成费马大定理,则下面说法正确的是
A.存在至少一组正整数组使方程有解
B.关于的方程有正有理数解
C.关于的方程没有正有理数解
D.当整数时,关于的方程没有正实数解
2018-12-24更新 | 1115次组卷 | 9卷引用:上海市金山中学2020-2021学年高一上学期12月月考数学试题
8 . 设是定义在R上的函数,对任意恒有.当时,,且.
(1)求证:
(2)证明:时恒有
(3)求证:上是减函数;
(4)若,求的取值范围.
2016-12-04更新 | 572次组卷 | 1卷引用:2015-2016学年浙江省温州市二外国语学校高一上期末数学试卷
共计 平均难度:一般