组卷网 > 章节选题 > 第三章 数系的扩充与复数的引入
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 34 道试题
1 . 对于函数,分别在处作函数的切线,记切线与轴的交点分别为,记为数列的第n项,则称数列为函数的“切线-轴数列”,同理记切线与轴的交点分别为,记为数列的第n项,则称数列为函数的“切线-轴数列”
(1)设函数,记“切线-轴数列”为,记的前n项和,求.
(2)设函数,记“切线-轴数列”为,猜想的通项公式并证明你的结论.
(3)设复数均为不为0的实数,记的共轭复数,设,记“切线-轴数列”为,求证:对于任意的不为0的实数,总有成立.
2024-01-01更新 | 495次组卷 | 7卷引用:模块一专题1【练】《导数的概念、运算及其几何意义》单元检测篇B提升卷(人教A2019版)
2 . 在复数域中,对于正整数满足的所有复数称为单位根,其中满足对任意小于的正整数,都有,则称这种复数为次的本原单位根,例如当时,存在四个4次单位根,因为,因此只有两个4次本原单位根
(1)直接写出复数的3次单位根,并指出那些是复数的3次本原单位根(无需证明).
(2)①若是复数的8次本原单位根,证明:
②若是复数次本原单位根,证明:
2024-07-23更新 | 177次组卷 | 2卷引用:第五章 平面向量与复数(测试)
3 . 在复平面内复数所对应的点为为坐标原点,是虚数单位.
(1),计算
(2)设,求证:,并指出向量满足什么条件时该不等式取等号.
2024-05-07更新 | 169次组卷 | 23卷引用:第5章复数章末十五种常考题型归类(2)-【帮课堂】(北师大版2019必修第二册)
4 . 现定义“维形态复数”:,其中为虚数单位,.
(1)当时,证明:“2维形态复数”与“1维形态复数”之间存在平方关系;
(2)若“2维形态复数”与“3维形态复数”相等,求的值;
(3)若正整数,满足,证明:存在有理数,使得.
2024-05-11更新 | 1146次组卷 | 7卷引用:安徽省合肥市第一中学2023-2024学年高一下学期5月期中联考数学试题
智能选题,一键自动生成优质试卷~
5 . 复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受.形如的数称为复数,其中称为实部,称为虚部,i称为虚数单位,.当时,为实数;当且时,为纯虚数.其中,叫做复数的模.设如图,点,复数可用点表示,这个建立了直角坐标系来表示复数的平面叫做复平面,轴叫做实轴,轴叫做虚轴.显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.按照这种表示方法,每一个复数,有复平面内唯一的一个点和它对应,反过来,复平面内的每一个点,有唯一的一个复数和它对应.一般地,任何一个复数都可以表示成的形式,即,其中为复数的模,叫做复数的辐角,我们规定范围内的辐角的值为辐角的主值,记作.叫做复数的三角形式.

   

(1)设复数,求的三角形式;
(2)设复数,其中,求
(3)在中,已知为三个内角的对应边.借助平面直角坐标系及阅读材料中所给复数相关内容,证明:

.
注意:使用复数以外的方法证明不给分.
2024-03-12更新 | 735次组卷 | 5卷引用:黑龙江省哈尔滨师范大学附属中学2023-2024学年高一下学期开学考试数学试卷
6 . 对于非空集合,定义其在某一运算(统称乘法)“×”下的代数结构称为“群”,简记为.而判断是否为一个群,需验证以下三点:
1.(封闭性)对于规定的“×”运算,对任意,都须满足
2.(结合律)对于规定的“×”运算,对任意,都须满足
3.(恒等元)存在,使得对任意
4.(逆的存在性)对任意,都存在,使得
记群所含的元素个数为,则群也称作“阶群”.若群的“×”运算满足交换律,即对任意,我们称为一个阿贝尔群(或交换群).
(1)证明:所有实数在普通加法运算下构成群
(2)记为所有模长为1的复数构成的集合,请找出一个合适的“×”运算使得在该运算下构成一个群,并说明理由;
(3)所有阶数小于等于四的群是否都是阿贝尔群?请说明理由.
2024-03-07更新 | 1276次组卷 | 6卷引用:2024届高三新高考改革数学适应性练习(九省联考题型)
7 . 已知复数
(1)求证:
(2)化简:
(3)若是方程的一个根,求的值.
2024-05-23更新 | 241次组卷 | 2卷引用:专题03 复数-【暑假自学课】(人教A版2019必修第二册)
8 . 我们可以把平面向量坐标的概念推广为“复向量”,即可将有序复数对视为一个向量,记作.类比平面向量的线性运算可以定义复向量的线性运算;两个复向量的数量积记作,定义为;复向量的模定义为
(1)设,求复向量的模;
(2)已知对任意的实向量,都有,当且仅当平行时取等号;
①求证:对任意实数abcd,不等式成立,并写出此不等式的取等条件;
②求证:对任意两个复向量,不等式仍然成立;
(3)当时,称复向量平行.设,若复向量平行,求复数z的值.
2024-05-23更新 | 508次组卷 | 4卷引用:黑龙江省哈尔滨市第九中学校2023-2024学年高一下学期期中学业阶段评价考试数学试卷
2024高一下·全国·专题练习
解答题-证明题 | 适中(0.65) |
9 . 求证:
(1);
(2).
2024-03-26更新 | 54次组卷 | 1卷引用:7.3.2复数乘、除运算的三角表示及其几何意义【第二练】“上好三节课,做好三套题“高中数学素养晋级之路
2024高一下·江苏·专题练习
解答题-证明题 | 较易(0.85) |
10 . 设,求证:
(1)
(2).
2024-03-23更新 | 111次组卷 | 2卷引用:7.2.2复数的乘、除运算【第二练】“上好三节课,做好三套题“高中数学素养晋级之路
共计 平均难度:一般