名校
解题方法
1 . 在空间直角坐标系中,过点且以为方向向量的直线方程可表示为,过点且以为法向量的平面方程可表示为.
(1)若直线与都在平面内,求平面的方程;
(2)在三棱柱中,点与坐标原点重合,点在平面内,平面以为法向量,平面的方程为,求点的坐标;
(3)若集合中所有的点构成了多面体的各个面,求的体积和相邻两个面所在平面的夹角的余弦值.
(1)若直线与都在平面内,求平面的方程;
(2)在三棱柱中,点与坐标原点重合,点在平面内,平面以为法向量,平面的方程为,求点的坐标;
(3)若集合中所有的点构成了多面体的各个面,求的体积和相邻两个面所在平面的夹角的余弦值.
您最近一年使用:0次
2 . 已知集合,其中,由中元素可构成两个点集和:,,其中中有个元素,中有个元素.新定义1个性质:若对任意的,必有,则称集合具有性质.
(1)已知集合与集合和集合,判断它们是否具有性质,若有,则直接写出其对应的集合,;若无,请说明理由;
(2)集合具有性质,若,求:集合最多有几个元素?
(3)试判断:集合具有性质是的什么条件,并证明.
(1)已知集合与集合和集合,判断它们是否具有性质,若有,则直接写出其对应的集合,;若无,请说明理由;
(2)集合具有性质,若,求:集合最多有几个元素?
(3)试判断:集合具有性质是的什么条件,并证明.
您最近一年使用:0次
名校
解题方法
3 . 已知双曲线的焦距为4,离心率为2,,分别为C的左、右焦点,两点,都在C上.
(1)求C的方程;
(2)若,求直线AB的方程;
(3)若,且,,求四个点A,B,,所构成四边形的面积的最小值.
(1)求C的方程;
(2)若,求直线AB的方程;
(3)若,且,,求四个点A,B,,所构成四边形的面积的最小值.
您最近一年使用:0次
名校
解题方法
4 . 若一个椭圆的焦距为质数,且离心率的倒数也为质数,则称这样的椭圆为“质朴椭圆”.
(1)证明:椭圆为“质朴椭圆”.
(2)是否存在实数,使得椭圆为“质朴椭圆”?若存在,求的值;若不存在,说明理由.
(3)设斜率为的直线经过椭圆的右焦点,且与交于,两点,,试问是否为“质朴椭圆”,说明你的理由.
(1)证明:椭圆为“质朴椭圆”.
(2)是否存在实数,使得椭圆为“质朴椭圆”?若存在,求的值;若不存在,说明理由.
(3)设斜率为的直线经过椭圆的右焦点,且与交于,两点,,试问是否为“质朴椭圆”,说明你的理由.
您最近一年使用:0次
名校
解题方法
5 . 已知双曲线的两条渐近线方程为为上一点.
(1)求双曲线的方程;
(2)若过点的直线与仅有1个公共点,求的方程;
(3)过双曲线的右焦点作两条互相垂直的直线,,且与交于两点,记的中点与交于两点,记的中点为.若,求点到直线的距离的最大值.
(1)求双曲线的方程;
(2)若过点的直线与仅有1个公共点,求的方程;
(3)过双曲线的右焦点作两条互相垂直的直线,,且与交于两点,记的中点与交于两点,记的中点为.若,求点到直线的距离的最大值.
您最近一年使用:0次
6 . 椭圆与椭圆:有相同的焦点,且经过点.
(1)求椭圆的方程;
(2)椭圆的右焦点为,设动直线与坐标轴不垂直,与椭圆交于不同的,两点,且直线和的斜率互为相反数.
①证明:动直线恒过轴上的某个定点,并求出该定点的坐标;
②求面积的最大值.
(1)求椭圆的方程;
(2)椭圆的右焦点为,设动直线与坐标轴不垂直,与椭圆交于不同的,两点,且直线和的斜率互为相反数.
①证明:动直线恒过轴上的某个定点,并求出该定点的坐标;
②求面积的最大值.
您最近一年使用:0次
7日内更新
|
1410次组卷
|
2卷引用:湖南省株洲市第二中学2024-2025学年高二上学期第一次月考(10月)数学试题
7 . 如图,已知点、分别是椭圆的左、右焦点,点是负半轴上的一点,,过点的直线与交于点与点.
(2)设直线的斜率为和直线的斜率为,椭圆上是否存在点,使得为定值,若存在,求出点与值,若不存在,请说明理由.
(1)求面积的最大值;
(2)设直线的斜率为和直线的斜率为,椭圆上是否存在点,使得为定值,若存在,求出点与值,若不存在,请说明理由.
您最近一年使用:0次
名校
解题方法
8 . 已知两个非零向量,在空间任取一点,作,则叫做向量的夹角,记作.定义与的“向量积”为:是一个向量,它与向量都垂直,它的模.如图,在四棱锥中,底面为矩形,底面,
为线段上一点,.
(2)若为的中点,求二面角的正弦值;
(3)若为线段上一点,且满足,求.
为线段上一点,.
(1)求的长;
(2)若为的中点,求二面角的正弦值;
(3)若为线段上一点,且满足,求.
您最近一年使用:0次
7日内更新
|
474次组卷
|
3卷引用:吉林省长春吉大附中实验学校2024-2025学年高二上学期第一次月考数学试题
名校
9 . 已知椭圆的离心率为,左顶点与上顶点的距离为.
(1)求椭圆的方程;
(2)点在椭圆上,且点不在轴上,线段的垂直平分线与轴相交于点,若为等边三角形,求直线的方程.
(1)求椭圆的方程;
(2)点在椭圆上,且点不在轴上,线段的垂直平分线与轴相交于点,若为等边三角形,求直线的方程.
您最近一年使用:0次
名校
10 . “曼哈顿距离”是十九世纪的赫尔曼闵可夫斯基所创词汇,它是一种使用几何度量空间的几何用语,定义如下:在平面直角坐标中的任意两点,的曼哈顿距离为.已知在四边形中,,,,且平分,若将沿线段向上折叠,使二面角为直二面角,如图所示,折叠后点在新图形中对应点记为.(1)计算的大小;
(2)若所在平面为,设,且,记点的轨迹为曲线.
(i)判断是什么曲线,并求出对应的方程;
(ii)设为平面上过点且与直线垂直的直线,已知在直线上,在上,求的最小值.
(2)若所在平面为,设,且,记点的轨迹为曲线.
(i)判断是什么曲线,并求出对应的方程;
(ii)设为平面上过点且与直线垂直的直线,已知在直线上,在上,求的最小值.
您最近一年使用:0次