解题方法
1 . 在平面直角坐标系xOy中,方程表示椭圆,求m的取值范围.
您最近一年使用:0次
解题方法
2 . 已知A是抛物线上一点(异于原点),斜率为的直线与抛物线恰有一个公共点A(与x轴不平行).
(1)当时,求点A的纵坐标;
(2)斜率为的直线与抛物线交于B,C两点,且是正三角形,求的取值范围.
(1)当时,求点A的纵坐标;
(2)斜率为的直线与抛物线交于B,C两点,且是正三角形,求的取值范围.
您最近一年使用:0次
2024-02-28更新
|
327次组卷
|
2卷引用:2024年集英苑冬季竞赛高中数学试题
3 . 17世纪德国天文学家约翰内斯·开普勒提出描述行星运动的三大基本定律:
(a)行星绕太阳运动的轨道为椭圆(圆可视为特殊的椭圆),太阳位于椭圆的一个焦点上,所有行星的轨道可近似看成在同一平面内;
(b)行星在其椭圆轨道上的相等时间内,与太阳连线所扫过的面积相等.
(c)行星的公转周期的平方与它们的椭圆轨道长轴的立方成正比.
开普勒三定律为我们理解行星运动提供了重要的基础,并且被广泛应用于天体力学和行星轨道计算中.设a,b,,地球、太阳、火星均可视为点,太阳位于,地球的公转轨道可近似看成圆,火星的公转轨道可近似看成圆,且火星的公转周期约为地球公转周期的1.882倍.霍曼转移轨道E是以太阳所在位置为其中一个焦点,并且与均相切的椭圆.2020年,我国自主研制的火星探测器天问一号从地球发射,经霍曼转移轨道到达火星,如下图所示.
(1)计算霍曼转移轨道E的离心率.(参考数据:,计算结果保留两位小数)
(2)设天问一号位于E上的一点P,当P不在上时,上存在依赖于P的两点A,B,使得为观测地球的最大视角(即地球不可能位于该角的外部),问:轨道平面内是否存在定圆,使得直线AB恒与相切?证明你的结论.
(a)行星绕太阳运动的轨道为椭圆(圆可视为特殊的椭圆),太阳位于椭圆的一个焦点上,所有行星的轨道可近似看成在同一平面内;
(b)行星在其椭圆轨道上的相等时间内,与太阳连线所扫过的面积相等.
(c)行星的公转周期的平方与它们的椭圆轨道长轴的立方成正比.
开普勒三定律为我们理解行星运动提供了重要的基础,并且被广泛应用于天体力学和行星轨道计算中.设a,b,,地球、太阳、火星均可视为点,太阳位于,地球的公转轨道可近似看成圆,火星的公转轨道可近似看成圆,且火星的公转周期约为地球公转周期的1.882倍.霍曼转移轨道E是以太阳所在位置为其中一个焦点,并且与均相切的椭圆.2020年,我国自主研制的火星探测器天问一号从地球发射,经霍曼转移轨道到达火星,如下图所示.
(1)计算霍曼转移轨道E的离心率.(参考数据:,计算结果保留两位小数)
(2)设天问一号位于E上的一点P,当P不在上时,上存在依赖于P的两点A,B,使得为观测地球的最大视角(即地球不可能位于该角的外部),问:轨道平面内是否存在定圆,使得直线AB恒与相切?证明你的结论.
您最近一年使用:0次
解题方法
4 . 已知点,、两点分别在轴、轴上运动,且满足,.
(1)求的轨迹方程;
(2)若一正方形的三个顶点在点的轨迹上,求其面积的最小值.
(1)求的轨迹方程;
(2)若一正方形的三个顶点在点的轨迹上,求其面积的最小值.
您最近一年使用:0次
名校
解题方法
5 . 在平面直角坐标系中,已知抛物线:,为其焦点,点的坐标为,设为抛物线上异于顶点的动点,直线交抛物线于另一点,连接,并延长分别交抛物线于点.
(1)当轴时,求直线与轴交点的坐标;
(2)当直线的斜率存在且分别记为,时,求证:.
(1)当轴时,求直线与轴交点的坐标;
(2)当直线的斜率存在且分别记为,时,求证:.
您最近一年使用:0次
2023-12-27更新
|
815次组卷
|
6卷引用:福建省莆田市仙游第一中学等五校联考2022-2023学年高二上学期期末数学试题
福建省莆田市仙游第一中学等五校联考2022-2023学年高二上学期期末数学试题(已下线)每日一题 第22题 非对称问题 凑结构代换(高二)山东省泰安市新泰市第一中学东校2023-2024学年高二上学期冬季学科竞赛数学试题(已下线)专题03 圆锥曲线题型全归纳(九大考点)-【寒假自学课】2024年高二数学寒假提升学与练(人教A版2019)(已下线)第7讲:圆锥曲线的模型【练】(已下线)第5讲:定点、定值、定直线问题【练】
名校
解题方法
6 . 已知双曲线的左、右焦点分别为,,点在双曲线上.
(1)求的方程;
(2)过作两条相互垂直的直线和,与的右支分别交,两点和,两点,求四边形面积的最小值.
(1)求的方程;
(2)过作两条相互垂直的直线和,与的右支分别交,两点和,两点,求四边形面积的最小值.
您最近一年使用:0次
2023-11-16更新
|
1725次组卷
|
11卷引用:湖南省长沙市雅礼中学2023-2024学年高二上学期期中数学试题
湖南省长沙市雅礼中学2023-2024学年高二上学期期中数学试题湖南省长沙市雨花区雅礼教育集团2023-2024学年高二上学期期中数学试题广东省肇庆市第一中学2023-2024学年高二上学期学科能力竞赛数学试题浙江省温州市温州中学2023-2024学年高二上学期12月月考数学试题(已下线)3.2.2 双曲线的几何性质(8大题型)-【题型分类归纳】2023-2024学年高二数学同步讲与练(苏教版2019选择性必修第一册)(已下线)第3章:圆锥曲线与方程章末重点题型复习-【题型分类归纳】2023-2024学年高二数学同步讲与练(苏教版2019选择性必修第一册)(已下线)第三章:圆锥曲线的方程章末重点题型复习-【题型分类归纳】2023-2024学年高二数学同步讲与练(人教A版2019选择性必修第一册)(已下线)第7讲:圆锥曲线的模型【练】(已下线)通关练16 双曲线13考点精练(100题)- 【考点通关】2023-2024学年高二数学高频考点与解题策略(人教A版2019选择性必修第一册)(已下线)专题26 直线与圆锥曲线的位置关系5种常见考法归类 - 【考点通关】2023-2024学年高二数学高频考点与解题策略(人教B版2019选择性必修第一册)(已下线)重组6 高二期中真题重组卷(湖南卷)B提升卷
名校
解题方法
7 . 已知点,点和点为椭圆上不同的三个点.当点,点B和点C为椭圆的顶点时,△ABC恰好是边长为2的等边三角形.
(1)求椭圆标准方程;
(2)若为原点,且满足,求的面积.
(1)求椭圆标准方程;
(2)若为原点,且满足,求的面积.
您最近一年使用:0次
2023-03-30更新
|
3238次组卷
|
7卷引用:广东省部分学校2023届高三下学期3月模拟数学试题
广东省部分学校2023届高三下学期3月模拟数学试题广东省2023届高考一模数学试题专题20平面解析几何(解答题)(已下线)第84练 计算速度训练4广东省肇庆市第一中学2023-2024学年高二上学期学科能力竞赛数学试题(已下线)第7讲:圆锥曲线的模型【练】专题08椭圆问题(解答题)
8 . 设点在抛物线上,的焦点为.、为过的两条倾斜角互补的直线,且、与的另一交点分别为、.已知直线的斜率为.
(1)求直线的斜率;
(2)记、与轴的交点分别为、.设和分别为和的面积,当时,求的取值范围.
(1)求直线的斜率;
(2)记、与轴的交点分别为、.设和分别为和的面积,当时,求的取值范围.
您最近一年使用:0次
9 . 已知椭圆.
(1)若过椭圆的一个焦点引两条互相垂直的弦、.求证:是定值;
(2)若、在椭圆上且.求证:是定值.
(1)若过椭圆的一个焦点引两条互相垂直的弦、.求证:是定值;
(2)若、在椭圆上且.求证:是定值.
您最近一年使用:0次
2022-09-07更新
|
794次组卷
|
5卷引用:沪教版(2020) 选修第一册 精准辅导 第2章 2.2(3) 椭圆的性质(第2课时)
沪教版(2020) 选修第一册 精准辅导 第2章 2.2(3) 椭圆的性质(第2课时)江西省吉安市永丰县永丰中学2022-2023学年高二上学期期末考试数学试题(A)(已下线)第26讲 圆锥曲线中定值问题(1)安徽省安庆市田家炳中学2022-2023学年高二下学期第二届“校长杯”竞赛数学试题(已下线)第5讲:定点、定值、定直线问题【练】
10 . 已知抛物线,过其焦点作两条相互垂直且不平行于轴的直线,分别交抛物线于点和点,线段的中点分别记为.
(1)求面积的最小值;
(2)求线段的中点满足的方程.
(1)求面积的最小值;
(2)求线段的中点满足的方程.
您最近一年使用:0次