组卷网 > 章节选题 > 必修第一册
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 9765 道试题
1 . 已知函数.
(1)当时,判断函数的奇偶性并证明;
(2)当时,利用函数单调性的定义证明函数上单调递增;
(3)求证:当时,方程内有实数解.
2024-04-02更新 | 68次组卷 | 1卷引用:北京市第一六六中学2023-2024学年高一上学期数学期末模拟试卷
2 . 定义在正实数集上的函数满足下列条件:
①存在常数,使得;②对任意实数,当时,恒有
(1)求证:对于任意正实数
(2)证明:上是单调减函数;
(3)若不等式恒成立,求实数的取值范围.
2024-03-24更新 | 74次组卷 | 1卷引用:河南省南阳六校2023届高三第一次联考文科数学试题
3 . 已知函数   .
(1)用单调性定义证明:上单调递增;
(2)若函数有3个零点,满足,且 .
①求证:
②求的值(表示不超过的最大整数).
2024-02-18更新 | 116次组卷 | 1卷引用:浙江省台州市2023-2024学年高一上学期1月期末数学试题

5 . 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.

阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察:(2)整体设元;(3)整体代入:(4)整体求和等.

例如,,求证:

证明:原式

阅读材料二:解决多元变量问题时,其中一种思路是运用消元思想将多元问题转化为一元问题,再结合一元问题处理方法进行研究.

例如,正实数满足,求的最小值.

解:由,得

当且仅当,即时,等号成立.

的最小值为

波利亚在《怎样解题》中指出:“当你找到第一个蘑菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征.

结合阅读材料解答下列问题:


(1)已知,求的值;
(2)若正实数满足,求的最小值.
2024-01-24更新 | 198次组卷 | 1卷引用:贵州省贵阳市普通中学2023-2024学年高一上学期期末监测考试数学试卷
6 . 已知函数.
(1)求证:为偶函数;
(2)设,判断的单调性,并用单调性定义加以证明.
2024-01-21更新 | 150次组卷 | 1卷引用:北京市大兴区2023-2024学年高一上学期期末检测数学试题
7 . 在数学中,不给出具体解析式,只给出函数满足的特殊条件或特征的函数称为“抽象函数”.我们需要研究抽象函数的定义域、单调性、奇偶性等性质.对于抽象函数,当时,,且满足:,均有
(1)证明:上单调递增;
(2)若函数满足上述函数的特征,求实数的取值范围;
(3)若,求证:对任意,都有
2024-01-30更新 | 177次组卷 | 1卷引用:广东省深圳市深圳实验学校光明部2023-2024学年高一上学期期末考试数学试题
8 . 固定项链的两端,在重力的作用下项链所形成的曲线是悬链线.1691年,莱布尼茨等得出“悬链线”方程,其中为参数.当时,就是双曲余弦函数,类似地我们可以定义双曲正弦函数.它们与正、余弦函数有许多类似的性质.
(1)类比正弦函数的二倍角公式,请写出双曲正弦函数的一个正确的结论:_____________.(只写出即可,不要求证明);
(2),不等式恒成立,求实数的取值范围;
(3)若,试比较的大小关系,并证明你的结论.
2024-01-27更新 | 885次组卷 | 6卷引用:福建省宁德市2023-2024学年高一上学期1月期末质量检测数学试题
9 . 已知函数.
(1)判断上的单调性,并证明;
(2)若,且都为正数,求证:.
10 . 已知函数
(1)写出的单调区间以及在每个单调区间上的单调性(无需证明)
(2)解不等式
(3)若满足,且,求证:
2023-12-28更新 | 198次组卷 | 1卷引用:上海市建平中学2023-2024学年高一上学期12月月考数学试题
共计 平均难度:一般