组卷网 > 章节选题 > 必修5
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 483 道试题
1 . 已知数列满足
(1)证明:数列为等差数列;
(2)求数列的前n项和
2024-04-04更新 | 486次组卷 | 1卷引用:江西省南昌市第十五中学,南昌市第十七中学2023-2024学年高二下学期第一次(3月)月考数学试题
2 . 数列满足.
(1)证明:数列为等差数列,并求数列的通项公式;
(2)求正整数,使得.
2024-05-03更新 | 1544次组卷 | 4卷引用:江西省八所重点中学2024届高三下学期4月联考数学试卷
3 . 已知数列,且满足.设.
(1)证明数列是等比数列;
(2)求数列的前n项和.
2024-04-02更新 | 295次组卷 | 1卷引用:江西省临川第一中学2023-2024学年高二下学期第一次月考数学试卷
4 . 若数列满足,从数列中任取2项相加,把所有和的不同值按照从小到大排成一列,称为数列的和数列,记作数列
(1)已知等差数列的前n项和为,且
①若,求的通项公式,并写出的前5项;
②若,求数列的前50项的和;
(2)若,证明:对任意,并求数列的所有项的和.
5 . 已知数列的前项和为,且
(1)求数列的通项公式;
(2)记,数列的前项和为,证明:
2024-03-25更新 | 554次组卷 | 1卷引用:江西省部分学校2023-2024学年高二下学期第一次阶段性考试数学试卷
6 . 在个数码构成的一个排列中,若一个较大的数码排在一个较小的数码的前面,则称它们构成逆序(例如,则构成逆序),这个排列的所有逆序的总个数称为这个排列的逆序数,记为,例如,.
(1)计算
(2)设数列满足,求的通项公式;
(3)设排列满足,证明:.
2024-04-22更新 | 375次组卷 | 2卷引用:江西省赣州市十八县(市)二十四校2023-2024学年高二下学期期中考试数学试题
7 . 在中,,若的中点,则;若的一个三等分点,则;若的一个四等分点,则

(1)如图①,若,用表示,你能得出什么结论?并加以证明.
(2)如图②,若交于,过点的直线分别交于点
①利用(1)的结论,用表示
②设,求的最小值.
2024-04-24更新 | 379次组卷 | 3卷引用:江西省南昌市第十中学2023-2024学年高一下学期第二次月考数学试题
8 . 已知圆C的方程为:,直线l的方程为:
(1)若直线l在两坐标轴上的截距相等,求直线l的方程;
(2)证明:直线l与圆C相交,设直线l与圆C相交于AB,求弦长的最小值,及此时直线l的方程;
(3)圆C的圆心CAB构成三角形,求三角形ABC面积的最大值.
10 . 对于数列,若满足恒成立的最大正数,则称为“数列”.
(1)已知等比数列的首项为1,公比为,且为“数列”,求
(2)已知等差数列与其前项和均为“数列”,且的单调性一致,求的通项公式;
(3)已知数列满足,若,证明:存在实数,使得是“数列”,并求的最小值.
共计 平均难度:一般