组卷网 > 知识点选题 > 基本不等式
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 32 道试题
1 . 已知函数的定义域为为大于的常数,对任意,都满足,则称函数上具有“性质”.
(1)试判断函数和函数是否具有“性质”(无需证明);
(2)若函数具有“性质”,且,求证:对任意,都有
(3)若函数的定义域为,且具有“性质”,试判断下列命题的真假,并说明理由,
①若在区间上是严格增函数,则此函数在上也是严格增函数;
②若在区间上是严格减函数,则此函数在上也是严格减函数.
2023-01-12更新 | 615次组卷 | 6卷引用:专题10 指数及指数函数压轴题-【常考压轴题】
2 . 证明不等式:
(1)若都是正数,求证:
(2)若是非负实数,则
(3)若是非负实数,则
(4)若,则
2022-03-07更新 | 382次组卷 | 4卷引用:3.2 基本不等式-2022-2023学年高一数学新教材同步配套教学讲义(苏教版2019必修第一册)
3 . 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.
阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察;(2)整体设元;(3)整体代入;(4)整体求和等.
例如,,求证:.
证明:原式.
波利亚在《怎样解题》中指出:“当你找到第一个藤菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征.
阅读材料二:基本不等式,当且仅当时等号成立,它是解决最值问题的有力工具.
例如:在的条件下,当x为何值时,有最小值,最小值是多少?
解:∵,∴,即,∴
当且仅当,即时,有最小值,最小值为2.
请根据阅读材料解答下列问题
(1)已知如,求下列各式的值:
___________.
___________.
(2)若,解方程.
(3)若正数ab满足,求的最小值.
2021-10-29更新 | 525次组卷 | 3卷引用:第二章 等式与不等式(压轴题专练)-速记·巧练(沪教版2020必修第一册)
4 . (1)设xy为正数,,证明
(2)x,求证:对于任意正整数n.
2021-09-25更新 | 138次组卷 | 1卷引用:高中数学解题兵法 第二十八讲 相等与不等之间的转化与变换
智能选题,一键自动生成优质试卷~
2022高三·全国·专题练习
5 . (1)已知,比较的大小,试将其推广至一般性结论并证明;
(2)求证:.
2022-01-13更新 | 339次组卷 | 1卷引用:第23讲 证明数列不等式-2022年新高考数学二轮专题突破精练
6 . 函数的凹凸性的定义是由丹麦著名的数学家兼工程师Johan Jensen在1905年提出来的.其中对于凸函数的定义如下:设连续函数的定义域为(或开区间,或都可以),若对于区间上任意两个数,均有成立,则称为区间上的凸函数.容易证明譬如都是凸函数.Johan Jensen在1906年将上述不等式推广到了个变量的情形,即著名的Jensen不等式:若函数为其定义域上的凸函数,则对其定义域内任意个数,均有成立,当且仅当时等号成立.
(1)若函数上的凸函数,求的取值范围:
(2)在中,求的最小值;
(3)若连续函数的定义域和值域都是,且对于任意均满足下述两个不等式:,证明:函数上的凸函数.(注:
2024-05-09更新 | 243次组卷 | 2卷引用:湖南省长沙市雅礼中学2023-2024学年高一下学期期中考试数学试题变式题16-19
7 . 某乡镇为全面实施乡村振兴战略,大力发展特色农产业,提升特色农产品的知名度,邀请了一家广告牌制作公司设计一个宽为x米、长为y米的长方形展牌,其中,并要求其面积为平方米.
(1)求y关于x的函数
(2)判断在其定义域内的单调性,并用定义证明;
(3)如何设计展牌的长和宽,才能使展牌的周长最小?
2023-12-15更新 | 293次组卷 | 3卷引用:3.4函数的应用(一)【第二练】“上好三节课,做好三套题“高中数学素养晋级之路
8 . 已知函数为常数)的图象上存在四个点,过的切线为,其中,且围成的图形是正方形.
(1)求证:
(2)试求的取值范围.
2023-06-08更新 | 616次组卷 | 3卷引用:第一讲:导数及其几何意义【练】 高三清北学霸150分晋级必备
9 . 根据多元微分求条件极值理论,要求二元函数在约束条件的可能极值点,首先构造出一个拉格朗日辅助函数,其中为拉格朗日系数.分别对中的部分求导,并使之为0,得到三个方程组,如下:
,解此方程组,得出解,就是二元函数在约束条件的可能极值点.的值代入到中即为极值.
补充说明:【例】求函数关于变量的导数.即:将变量当做常数,即:,下标加上,代表对自变量x进行求导.即拉格朗日乘数法方程组之中的表示分别对进行求导.
(1)求函数关于变量的导数并求当处的导数值.
(2)利用拉格朗日乘数法求:设实数满足,求的最大值.
(3)①若为实数,且,证明:
②设,求的最小值.
2024-03-27更新 | 853次组卷 | 2卷引用:压轴题03不等式压轴题13题型汇总-2
10 . 在四面体中,中点,外接球的球心,.
(1)证明:
(2)若,求四面体体积的最大值.
2024-03-12更新 | 239次组卷 | 2卷引用:第3讲:立体几何中的探究问题【练】
共计 平均难度:一般