组卷网 > 知识点选题 > 用回归直线方程对总体进行估计
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 711 道试题
1 . 发展新能源汽车是我国从汽车大国迈向汽车强国的必由之路,是应对气候变化推动绿色发展的战略举措.随着国务院《新能源汽车产业发展规划(2021—2035)》的发布,我国自主品牌汽车越来越具备竞争力.国产某品牌汽车对市场进行调研,统计了该品牌新能源汽车在某城市年前几个月的销售量(单位:辆),用表示第月份该市汽车的销售量,得到如下统计表格:

1

2

3

4

5

6

7

28

32

37

45

47

52

60

(1)经研究,满足线性相关关系,求关于的线性回归方程,并根据此方程预测该店月份的成交量(按四舍五入精确到整数);
(2)该市某店为感谢客户,决定针对该品牌的汽车成交客户开展抽奖活动,设“一等奖”、“二等奖”和“祝您平安”三种奖项,“一等奖”奖励千元;“二等奖”奖励千元;“祝您平安”奖励纪念品一份.在一次抽奖活动中获得“二等奖”的概率为,获得一份纪念品的概率为,现有甲、乙两个客户参与抽奖活动,假设他们是否中奖相互独立,求此二人所获奖金总额(千元)的分布列及数学期望.
参考数据及公式:
2024-02-17更新 | 686次组卷 | 6卷引用:山东省日照市2023-2024学年高二上学期期末校际联合考试数学试题
2 . 数字经济是继农业经济、工业经济之后的主要经济形态.近年来,在国家的大力推动下,我国数字经济规模增长迅猛,《“十四五”数字经济发展规划》更是将数字经济上升到了国家战略的层面.某地区2023年上半年月份与对应数字经济的生产总值(即GDP)(单位:亿元)如下表所示.
月份123456
生产总值303335384145
根据上表可得到回归方程,则(     
A.
B.正相关
C.若表示变量之间的相关系数,则
D.若该地区对数字经济的相关政策保持不变,则该地区7月份的生产总值约为亿元
2024-02-12更新 | 484次组卷 | 3卷引用:浙江省宁波市2024届高三上学期期末数学试题
3 . 某地政府为解除空巢老人日常护理和社会照料的困境,大力培育发展养老护理服务市场.从年开始新建社区养老机构,下表为该地区近年新建社区养老机构的数量对照表.

年份

2017

2018

2019

2020

2021

2022

2023

年份代码

1

2

3

4

5

6

7

新建社区养老机构


(1)若该地区参与社区养老的老人的年龄近似服从正态分布,其中年龄的有人,试估计该地参与社区养老的老人有多少?(结果按四舍五入取整数)
(2)已知变量之间的样本相关系数,请求出关于的线性回归方程,并据此估计年时,该地区新建社区养老机构的数量.(结果按四舍五入取整数)
参考公式与数据:①.;
②若随机变量,则
.
2024-02-06更新 | 390次组卷 | 3卷引用:江西省新余市2023-2024学年高二上学期期末质量检测数学试题卷
4 . 2023年9月23日—10月8日,亚运会在杭州举行,“碳中和”是本届亚运会一大亮点.为了打造碳中和亚运会,杭州亚运会上线了“亚运碳中和-减污降碳协同”数字化管理平台.该平台将数字化技术运用到碳排放采集、核算、减排、注销、评价管理全流程,探索建立了一套科学完整的碳排放管理体系.值此机会,某家公司重点推出新型品牌新能源汽车,以下是其中五个月的销售单:
2023月份56789
月份代码12345
新能源车销售(万辆)1.62.12.73.74.6
(1)根据表中数据,求出关于的线性回归方程;
(2)随着亚运会的火热,新能源汽车也会一直持续下去,试估计2023年12月份该公司出售多少辆新能源汽车?
参考公式:对于一组具有线性相关关系的数据,其回归直线的斜率和截距的最小二乘估计公式分别为.
2024-02-05更新 | 270次组卷 | 3卷引用:江西省九江市2023-2024学年高二上学期期末考试数学试题
智能选题,一键自动生成优质试卷~
5 . 某学校研究性学习小组在学习生物遗传学的过程中,为验证高尔顿提出的关于儿子成年后身高(单位:)与父亲身高(单位:)之间的关系及存在的遗传规律,随机抽取了5对父子的身高数据,如下表:
父亲身高160170175185190
儿子身高170174175180186
参考数据及公式:.
(1)根据表中数据,求出关于的线性回归方程;
(2)小明的父亲身高,请你利用回归直线方程预测小明成年后的身高.
6 . 已知具有相关关系,且利用关于的回归直线方程进行预测,当时,,当时,,则关于的回归直线方程中的回归系数为__________.
2024-01-17更新 | 217次组卷 | 3卷引用:辽宁省县级重点高中协作体2023-2024学年高二上学期期末数学试题
7 . 5G技术在我国已经进入调整发展的阶段,5G手机的销量也逐渐上升,某手机商城统计了最近5个月手机的实际销量,如下表所示:
时间12345
销售量(千只)0.50.81.01.21.5
线性相关,且线性回归方程为,则下列说法不正确的是(       
A.由题中数据可知,变量正相关,且相关系数
B.线性回归方程
C.当解释变量每增加1个单位时,预报变量平均增加0.24个单位
D.可以预测时,该商场5G手机销量约为1.72(千只)
2023-10-09更新 | 705次组卷 | 3卷引用:天津市耀华中学2024届高三上学期第一次月考数学试题
8 . 有人调查了某高校14名男大学生的身高及其父亲的身高,得到如下数据表:

编号

1

2

3

4

5

6

7

8

9

10

11

12

13

14

父亲身高/cm

174

170

173

169

182

172

180

172

168

166

182

173

164

180

儿子身高/cm

176

176

170

170

185

176

178

174

170

168

178

172

165

182

利用最小二乘法计算的儿子身高关于父亲身高的回归直线为.

根据以上信息进行的如下推断中,正确的是(     
A.当时,,若一位父亲身高为,则他儿子长大成人后的身高一定是
B.父亲身高和儿子身高是正相关,因此身高更高的父亲,其儿子的身高也更高
C.从回归直线中,无法判断父亲身高和儿子身高是正相关还是负相关
D.回归直线的斜率可以解释为父亲身高每增加,其儿子身高平均增加
2024-01-17更新 | 344次组卷 | 1卷引用:天津市武清区英华实验学校2024届高三上学期第二次月考数学试题
9 . 某地区实行社会主义新农村建设后,农村的经济收入明显增加,根据统计得到从2015年至2021年农村居民家庭收入y(单位:万元)的数据,其数据如下表:

年份

2015

2016

2017

2018

2019

2020

2021

年份代号t

1

2

3

4

5

6

7

农村居民家庭收入y

3.9

4.3

4.6

5.4

5.8

6.2

6.9

附:回归直线的斜率和截距的最小二乘估计公式分别为
参考数据:
(1)求y关于t的线性回归方程;
(2)根据(1)中的回归方程,分析2015年至2021年该地区农村居民家庭收入的变化情况,并预测该地区2024年农村居民家庭收入.
10 . 研究表明,学生的学习成绩y(分)与每天投入的课后学习时间x(分钟)有较强的线性相关性.某校数学小组为了研究如何高效利用自己的学习时间,收集了该校高三(1)班学生9个月内在某学科(满分100分)所投入的课后学习时间和月考成绩的相关数据,下图是该小组制作的原始数据与统计图(散点图).
月次123456789
某科课后投入时间(分钟)202530354045505560
高三(1)班某科平均分(分)6568757273737373.573

   
(1)当时,该小组建立了的线性回归模型,求其经验回归方程;
(2)当时,由图中观察到,第3个月的数据点明显偏离回归直线,若剔除第3个月数据点后,用余下的4个散点做线性回归分析,得到新回归直线,证明:
(3)当时,该小组确定了满足的线性回归方程为:,该数学小组建议该班在该学科投入课后学习时间为40分钟,请结合第(1)(2)问的结论说明该建议的合理性.
附:经验回归直线的斜率和截距的最小二乘估计公式分别为:
2024-01-06更新 | 191次组卷 | 1卷引用:重庆市拔尖强基联盟2024届高三上学期12月月考数学试题
共计 平均难度:一般