组卷网 > 章节选题 > 必修5
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 8 道试题
1 . 国际象棋是国际通行的智力竞技运动.国际象棋使用格黑白方格相间棋盘,骨牌为每格与棋盘的方格大小相同的格灰色方格.若某种黑白相间棋盘与骨牌满足以下三点:①每块骨牌覆盖棋盘的相邻两格;②棋盘上每一格都被骨牌覆盖;③没有两块骨牌覆盖同一格,则称骨牌构成了棋盘的一种完全覆盖.显然,我们能够举例说明格黑白方格相间棋盘能被骨牌完全覆盖.

(1)证明:切掉格黑白方格相间棋盘的对角两格,余下棋盘不能被骨牌完全覆盖;
(2)请你切掉格的黑白方格相间棋盘的任意两个异色方格,然后画出余下棋盘的一种骨牌完全覆盖方式,并证明:无论切掉的是哪两个异色方格,余下棋盘都能被骨牌完全覆盖;
(3)记格黑白方格相间棋盘的骨牌完全覆盖方式数为,数列的前n项和为,证明:.
2024-03-06更新 | 759次组卷 | 4卷引用:山东省菏泽第一中学人民路校区2024届高三下学期开学考试数学试题
填空题-双空题 | 适中(0.65) |
名校
3 . 剪纸,又叫刻纸,是一种镂空艺术,是中国古老的民间艺术之一.已知某剪纸的裁剪工艺如下:取一张半径为1的圆形纸片,记为,在内作内接正方形,接着在该正方形内作内切圆,记为,并裁剪去该正方形内多余的部分(如图所示阴影部分),记为一次裁剪操作,……重复上述裁剪操作n次,最终得到该剪纸.则第4次裁剪操作结束后所得的面积为______;第n次操作后,所有裁剪操作中裁剪去除的面积之和为______
   
4 . 欧拉是人类历史上最伟大的数学家之一.在数学史上,人们称18世纪为欧拉时代.直到今天,我们在数学及其应用的众多分支中,常常可以看到欧拉的名字,如著名的欧拉函数.欧拉函数的函数值等于所有不超过正整数n且与n互素的正整数的个数,例如,则下列说法正确的是(       
A.B.,都有
C.方程有无数个根D.
解答题-证明题 | 困难(0.15) |
名校
5 . 已知有穷数列中的每一项都是不大于的正整数.对于满足的整数,令集合.记集合中元素的个数为(约定空集的元素个数为0).
(1)若,求
(2)若,求证:互不相同;
(3)已知,若对任意的正整数都有,求的值.
6 . 克罗狄斯·托勒密是希腊数学家,他博学多才,既是天文学权威,也是地理学大师.托勒密定理是平面几何中非常著名的定理,它揭示了圆内接四边形的对角线与边长的内在联系,该定理的内容为圆的内接四边形中,两对角线长的乘积等于两组对边长乘积之和.已知四边形是圆的内接四边形,且.若,则圆的半径为(       
A.4B.2C.D.
7 . 如图,用相同的球堆成若干堆“正三棱锥”形的装饰品,其中第1堆只有1层,且只有1个球;第2堆有2层,第1层有1个球,第2层有3个球;…;第堆有n层,第1层有1个球,第2层有3个球,第3层有6个球,……,第n层有个球.记第n堆的球的总数为,则(参考公式:)(       
A.B.
C.D.
8 . 已知等差数列的首项,公差为,在中每相邻两项之间都插入两个数,使它们和原数列的项一起构成一个新的等差数列.
(1)求数列的通项公式;
(2)若,…,,…是从中抽取的部分项按原来的顺序排列组成的一个等比数列,,令,求数列的前项和.
2021-09-06更新 | 702次组卷 | 4卷引用:山东省青岛市2021-2022学年高三上学期开学考试数学试题
共计 平均难度:一般