组卷网 > 章节选题 > 选修2-1
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 921 道试题
1 . 已知椭圆过点,且离心率为.设为椭圆的左、右顶点,为椭圆上异于的一点,直线分别与直线相交于两点,且直线与椭圆交于另一点
(1)求椭圆的标准方程;
(2)求证:直线的斜率之积为定值;
(3)判断三点是否共线:并证明你的结论.
13-14高三·全国·课后作业
2 . 如图所示,四边形ABCD是边长为3的正方形,平面ABCDBE与平面ABCD所成角为60°.

(1)求证:平面BDE
(2)求二面角的余弦值;
(3)设点M是线段BD上的一个动点,试确定点M的位置,使得平面BEF,并证明你的结论.
2021-11-11更新 | 1883次组卷 | 27卷引用:2015高考数学(理)一轮配套特训:7-7立体几何中的向量方法
3 . 设直线,曲线.若直线与曲线同时满足下列两个条件:①直线与曲线相切且至少有两个切点;②对任意都有.则称直线为曲线的“上夹线”.
(1)已知函数.求证:为曲线的“上夹线”;
(2)观察下图:

根据上图,试推测曲线的“上夹线”的方程,并给出证明.
2021-08-24更新 | 536次组卷 | 4卷引用:陕西省宝鸡市千阳中学2019-2020学年高二下学期期末理科数学试题
4 . 知椭圆的左、右顶点分别为 ,点该椭圆上,且该椭圆的右焦点与抛物线 的焦点重合.
(1)求椭圆的标准方程;
(2)如图,过点且斜率为的直线与椭圆交于两点,记直线的斜率为 ,直线的斜率为,直线的斜率,求证:_____________.

在以下三个结论中选择一个填在横线处进行证明.
①直线的交点在定直线上;

.
2020-12-24更新 | 302次组卷 | 1卷引用:江苏省苏州市张家港市2020-2021学年高三上学期12月阶段性调研测试数学试题
20-21高二上·全国·单元测试
5 . 设集合W由满足下列两个条件的数列{an}构成:①;②存在实数M,使anMn为正整数)
(1)在只有5项的有限数列{an}、{bn}中,其中a1=1,a2=2,a3=3,a4=4,a5=5,b1=1,b2=4,b3=5,b4=4,b5=1,试判断数列{an}、{bn}是否为集合W中的元素;
(2)设{cn}是等差数列,sn是其前n项和,c3=4,s3=18,证明数列{sn}∈W,并写出M的取值范围;
(3)设数列{dn}∈W,对于满足条件的M的最小值M0,都有dnM0nN*)求证:数列{dn}单调递增.
2020-10-27更新 | 203次组卷 | 3卷引用:第一章++常用逻辑用语(能力提升)-2020-2021学年高二数学单元测试定心卷(人教版选修2-1)
解答题-证明题 | 适中(0.65) |
6 . 如图,在三棱柱中,DE分别是的中点.求证:

(1)平面
(2)平面.(用向量方法证明)
2020-08-12更新 | 584次组卷 | 6卷引用:【市级联考】江苏省南京市、盐城市2019届高三第二次模拟考试数学试题
7 . 已知轴于两点,过以为长轴,离心率为的椭圆的左焦点的直线交椭圆,分别交轴和圆.
(1)求椭圆的标准方程;
(2)若.求证:为定值;
(3)过原点作直线的垂线交直线于点.试探究:当点在圆上运动时(不与重合),直线与圆是否保持相切?若是,请证明;若不是,请说明理由.
2020-07-29更新 | 231次组卷 | 3卷引用:高二上学期期末综合测试二+(B卷提升卷)-2020-2021学年高二数学上学期同步单元AB卷(苏教版,新课改地区专用)
8 . 已知椭圆,点A、点B分别是椭圆上关于原点对称的两点,点P是椭圆上不同于点A和点B的任意一点.
(1)求证:直线PA的斜率与直线PB的斜率之积为定值,并求出该定值;
(2)试对双曲线写出具有类似特点的正确结论,并加以证明.
2020-04-20更新 | 415次组卷 | 2卷引用:江苏省盐城中学2018-2019学年高二上学期期末数学试题
9 . 如图,在三棱柱ABC中,平面ABCDEFG分别为AC的中点,AB=BC=AC==2.

   

(1)求证:AC⊥平面BEF
(2)求二面角B−CDC1的余弦值;
(3)证明:直线FG与平面BCD相交.
2018-06-09更新 | 15375次组卷 | 35卷引用:江苏省徐州市侯集高级中学2019-2020学年高二上学期期末数学试题
10 . 已知椭圆过点,离心率为.
(1)求椭圆的标准方程;
(2)过椭圆的上顶点作直线交抛物线两点,为原点.
①求证:
②设分别与椭圆相交于两点,过原点作直线的垂线,垂足为,证明:为定值.
共计 平均难度:一般