组卷网>知识点选题>利用均值和方差解决风险评估和决策型问题
显示知识点
显示答案
| 共计 375 道试题
1 . 为加强进口冷链食品监管,某省于2020年底在全省建立进口冷链食品集中监管专仓制度,在口岸、目的地市或县(区、市)等进口冷链食品第一入境点,设立进口冷链食品集中监管专仓,集中开展核酸检测和预防性全面消毒工作,为了进一步确定某批进口冷冻食品是否感染病毒,在入关检疫时需要对其采样进行化验,若结果呈阳性,则有该病毒;若结果呈阴性,则没有该病毒,对于份样本,有以下两种检验方式:一是逐份检验,则需检验n次:二是混合检验,将k份样本分别取样混合在一起,若检验结果为阴性,那么这k份全为阴性,因而检验一次就够了;如果检验结果为阳性,为了明确这k份究竟哪些为阳性,就需要对它们再次取样逐份检验,则k份检验的次数共为次若每份样本没有该病毒的概率为,而且样本之间是否有该病毒是相互独立的.
(1)若,求2份样本混合的结果为阳性的概率.
(2)若,取得4份样本,考虑以下两种检验方案:
方案一:采用混合检验:
方案二:平均分成两组,每组2份样本采用混合检验.
若检验次数的期望值越小,则方案越“优”,试问方案一、二哪个更“优”?请说明理由.
2 . 单板滑雪U型池比赛是2022年北京冬奥会比赛中的一个项目,进入决赛阶段的运动员按照预赛成绩由低到高的出场顺序轮流进行三次滑行,裁判员根据运动员的腾空高度、完成的动作难度和效果进行评分,最终取单次最高分作为比赛成绩.现有运动员甲、乙两人在2021年A赛季中单板滑雪U型池成绩如下表:

分站

运动员甲的三次滑行成绩

运动员乙的三次滑行成绩

第1次

第2次

第3次

第1次

第2次

第3次

第1站

80.20

85.00

83.03

80.11

88.00

79.02

第2站

82.13

86.31

89.00

79.32

81.22

88.00

第3站

79.10

80.01

87.00

88.50

75.36

87.10

第4站

84.02

91.00

86.71

75.13

88.00

81.01

第5站

80.02

79.36

88.00

85.40

86.04

87.50


假设甲、乙两人每次比赛成绩相互独立.
(1)从上表5站中任意选取2站,用X表示这2站中甲的成绩高于乙的成绩的站数,求X的分布列和数学期望;
(2)请从甲、乙2人中推荐1人参加2022年北京冬奥会单板滑雪U型池比赛,并说明你的理由(言之有理即可);
(3)根据大数据分析得知,如果让运动员甲参加2022年北京冬奥会单板滑雪U型池比赛,他在北京冬奥会单板滑雪U型池比赛的成绩X近似服从正态分布,其中可用他在2021年A赛季中单板滑雪U型池的平均成绩与方差近似代替,求运动员甲参加2022年北京冬奥会单板滑雪U型池比赛的成绩在86分~92分的概率.
附:①若随机变量X服从正态分布,则
②方差,其中,…,的平均数.
3 . 某工厂采购了一批新的生产设备.经统计,设备正常状态下,生产的产品正品率为0.98.为监控设备生产过程,检验员每天从该设备生产的产品中随机抽取10件产品,并检测质量.规定:抽检的10件产品中,若至少出现2件次品,则认为设备生产过程出现了异常情况,需对设备进行检测及修理.
(1)假设设备正常状态,记X表示一天内抽取的10件产品中的次品件数,求,并说明上述监控生产过程规定的合理性;
(2)该设备由甲、乙两个部件构成,若两个部件同时出现故障,则设备停止运转;若只有一个部件出现故障,则设备出现异常.已知设备出现异常是由甲部件故障造成的概率为p,由乙部件故障造成的概率为.若设备出现异常,需先检测其中一个部件,如果确认该部件出现故障,则进行修理,否则,继续对另一部件进行检测及修理.已知甲部件的检测费用1000元,修理费用5000元,乙部件的检测费用2000元,修理费用4000元.当设备出现异常时,仅考虑检测和修理总费用,应先检测甲部件还是乙部件,请说明理由.
参考数据:
4 . 某单位为患病员工集体筛查新型流感病毒,需要去某医院检验血液是否为阳性,现有份血液样本,有以下两种检验方案,方案一:逐份检验,则需要检验k次;方案二:混合检验,将k份血液样本分别取样混合在一起检验一次,若检验结果为阴性,则k份血液样本均为阴性,若检验结果为阳性,为了确定k份血液中的阳性血液样本,则对k份血液样本再逐一检验逐份检验和混合检验中的每一次检验费用都是元,且k份血液样本混合检验一次需要额外收元的材料费和服务费.假设在接受检验的血液样本中,每份样本是否为阳性是相互独立的,且据统计每份血液样本是阳性的概率为
(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验的方式,求恰好经过3次检验就能把阳性样本全部检验出来的概率.
(2)若份血液样本采用混合检验方案,需要检验的总次数为X,求X分布列及数学期望;
(3)①若,以检验总费用为决策依据,试说明该单位选择方案二的合理性;
②若,采用方案二总费用的数学期望低于方案一,求k的最大值.
参考数据:
5 . 某冰糖橙是甜橙的一种,以味甜皮薄著称.该橙按照等级可分为四类:珍品、特级、优级和一级.某采购商打算订购一批橙子销往省外,并从采购的这批橙子中随机抽取100箱(每箱有),利用橙子的等级分类标准得到的数据如下表:

等级

珍品

特级

优级

一级

箱数

40

30

10

20


(1)若将频率作为概率,从这批采购的橙子中随机抽取4箱,求恰好有2箱是一级品的概率;
(2)用按比例分配分层随机抽样的方法从这100箱橙子中抽取10箱,再从抽取的10箱中随机抽取3箱,X表示抽取的珍品的箱数,求X的分布列及均值
(3)利用样本估计总体,果园老板提出两种方案供采购商参考:方案一:不分等级出售,价格为27元/;方案二:分等级出售,橙子价格如下表.

等级

珍品

特级

优级

一级

价格/(元/

36

30

24

18


从采购商的角度考虑,应该采用哪种方案?
6 . 随着原材料供应价格的上涨,某型防护口罩售价逐月上升. 1至5月,其售价(元/只)如下表所示:
月份x
售价y(元/只)11.222.83.4

(1)请根据参考公式和数据计算相关系数(精确到0.01)说明该组数据中yx之间的关系可用线性回归模型进行拟合,并求y关于x的线性回归方程
(2)某人计划在六月购进一批防护口罩, 经咨询届时将有两种促销方案:
方案一:线下促销优惠.采用到店手工“摸球促销”的方式.其规则为:袋子里有颜色为红、黄、蓝的三个完全相同的小球,有放回的摸三次.若三次摸的是相同颜色的享受七折优惠,三次摸的仅有两次相同颜色的享受八折优惠,其余的均九折优惠.
方案二:线上促销优惠.与店铺网页上的机器人进行“石头、剪刀、布”视频比赛.客户和机器人每次同时、随机、独立地选择“石头、剪刀、布”中的一种进行比对,约定:石头胜剪刀,剪刀胜布,布胜石头.手势相同视为平局,不分胜负.客户和机器人需比赛三次,若客户连胜三次则享受七折优惠,三次都不胜享受九折优惠,其余八折优惠.
请用(1)中方程对六月售价进行预估,用X表示据预估数据促销后的售价,求两种方案下X的分布列和数学期望,并根据计算结果进行判断,选择哪种方案更实惠.
参考公式:,其中
参考数据:
7 . 2020年以来,新冠疫情对商品线下零售影响很大.某商家决定借助线上平台开展销售活动.现有甲、乙两个平台供选择,且当每件商品的售价为元时,从该商品在两个平台所有销售数据中各随机抽取100天的日销售量统计如下,
商品日销售量(单位:件)678910
甲平台的天数1426262410
乙平台的天数1025352010

假设该商品在两个平台日销售量的概率与表格中相应日销售量的频率相等,且每天的销售量互不影响,
(1)求“甲平台日销售量不低于8件”的概率,并计算“从甲平台所有销售数据中随机抽取3天的日销售量,其中至少有2天日销售量不低于8件”的概率;
(2)已知甲平台的收费方案为:每天佣金60元,且每销售一件商品,平台收费30元;乙平台的收费方案为:每天不收取佣金,但采用分段收费,即每天销售商品不超过8件的部分,每件收费40元,超过8件的部分,每件收费35元.某商家决定在两个平台中选择一个长期合作,从日销售收入(单价×日销售量-平台费用)的期望值较大的角度,你认为该商家应如何决策?说明理由.
8 . 《中共中央国务院关于深入打好污染防治攻坚战的意见》提出“构建智慧高效的生态环境管理信息化体系”,下一步,需加快推进5G、物联网、大数据、云计算等新信息技术在生态环境保护领域的建设与应用,实现生态环境管理信息化、数字化、智能化.某科技公司开发出一款生态环保产品.已知该环保产品每售出件预计利润为万元,当月未售出的环保产品,每件亏损万元.根据市场调研,该环保产品的市场月需求量在(单位:件)内取值,将月需求量区间平均分成组,以各组区间的中点值代表该组的月需求量,得到频率分布折线图如下:

(1)请根据频率分布折线图,估计该环保产品的市场月需求量的平均值及方差;
(2)以频率分布折线图的频率估计概率,若该公司计划环保产品的月产量(单位:件),求月利润(单位:万元)的数学期望的最大值.
(参考数据:是各组区间中点值,是各组月需求量对应的频率,
9 . 因疫情灾害影响,某企业生产严重受损,为此该厂家提出两种恢复生产的方案,每种方案都需分两年实施.已知企业在灾害影响前的年产量为
实施方案1:预计第一年可以使产量达到的概率都是0.5;第二年可以使产量为第一年产量的1.2倍和1.0倍的概率分别是0.4和0.6.
实施方案2:预计第一年可以使产量达到的概率分别是0.3和0.7;第二年可以使产量为第一年产量的1.4倍和1.0倍的概率分别是0.2和0.8.
实施每种方案第一年与第二年相互独立,令表示方案实施两年后的产量.
(1)写出的分布列;
(2)实施哪种方案,两年后企业的年产量超过疫情灾害影响前的概率更大?请说明理由.
(3)不管哪种方案,如果实施两年后产量达不到、恰好达到和超过疫情灾害前产量,预计利润分别为10万元、15万元和30万元.如果你是企业决策者,你将选择哪种方案?请说明理由.
10 . 某学校举行“百科知识”竞赛,每个班选派一位学生代表参加.某班经过层层选拔,李明和王华进入最后决赛,决赛方式如下:给定个问题,假设李明能且只能对其中个问题回答正确,王华对其中任意一个问题回答正确的概率均为.由李明和王华各自从中随机抽取个问题进行回答,而且每个人对每个问题的回答均相互独立.
(1)求李明和王华回答问题正确的个数均为的概率;
(2)设李明和王华回答问题正确的个数分别为,求的期望和方差,并由此决策派谁代表该班参加竞赛更好.