组卷网>知识点选题>利用均值和方差解决风险评估和决策型问题
知识点
解析
| 共计 514 道试题
1 . 甲、乙两机床同时加工标准直径为的零件,为检验质量,各从中抽取5件测量其直径,所得数据如下表:
9810099100103
9910010299100

(1)分别计算两组数据的平均数;
(2)分别计算两组数据的方差;
(3)根据(1)(2)所得结果,判断哪台机床加工该零件的质量更好?
2 . 从甲、乙两人中选拔一人参加射击比赛,对他们的射击水平进行了测试,两人在相同条件下各射击10次,命中的环数如下:
甲:
乙:
(1)分别计算甲、乙两人射击命中环数的平均数;
(2)分别计算甲、乙两人射击命中环数的方差;
(3)根据(1)(2)的计算结果,你认为选派谁去参加射击比赛更好?请说明理由.
3 . 2022年2月4日北京冬季奥运会正式开幕,“冰墩墩”作为冬奥会的吉祥物之一,受到各国运动员的“追捧”,成为新晋“网红”,广大网友纷纷倡导“一户一墩”,与此同时,也带火了相关产业.某体育销售公司对销售人员的奖励制度如下:(假设为月销售量,单位是件)①当时,当月给奖金1000元;②当时,当月给奖金3000元;③当时,当月给奖金10000元.已知该产品的月销售量.
(1)该公司销售人员的月奖金大约为多少元?(精确到整数位)
(2)现从该公司一批产品中,随机抽出9件产品进行检验.已知该产品是合格品的概率为,记这9件产品中恰有3件不合格品的概率为,试问当等于多少时,取得最大值?
(参考数据:若,则
4 . 近两年肆虐全球的新型冠状病毒是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状发热咳嗽气促和呼吸困难等.在较严重病例中,感染可导致肺炎严重急性呼吸综合征肾衰竭,甚至死亡.核酸检测是诊断新冠肺炎的重要依据,首先取病人的唾液或咽拭子的样本,再提取唾液或咽拭子样本里的遗传物质,若有病毒,样本检测会呈现阳性,否则为阴性.根据统计发现,疑似病例核酸检测呈阳性的概率为.现有4例疑似病例,分别对其取样检测,多个样本检测时,既可以逐个化验,也可以将若干个样本混合在一起化验.混合样本中只要有病毒,则混合样本化验结果就会呈阳性,若混合样本呈阳性,则将该组中备份的样本再逐个化验;若混合样本呈阴性,则判定该组各个样本均为阴性,无需再检验.现有以下三种方案:
方案一:逐个化验;
方案二:四个样本混合在一起化验;
方案三:平均分成两组,分别混合在一起化验.
在新冠肺炎爆发初期,由于检查能力不足,化检次数的期望值越小,则方案越“优”.
(1)若按方案一,求4个疑似病例中恰有2例呈阳性的概率;
(2)现将该4例疑似病例样本进行化验,请问:方案一三中哪个最“优”?并说明理由.
5 . 现给出一位同学在7月和8月进行的米短跑测试成绩(单位:秒):
7月
8月

记7月、8月成绩的样本平均数分别为,样本方差分别为.
附:①统计量可在一定程度上说明两组成绩的差异(当时,可认为两组成绩有显著差异);
②若满足,则可说明成绩有显著提高.
(1)判断该同学的两组成绩是否有显著差异,并说明理由;
(2)判断该同学的成绩是否有显著提高,并说明理由.
6 . 因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出两种拯救果树的方案,每种方案都需分两年实施.若实施方案一,预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为第一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计第一年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为第一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第一年与第二年相互独立,令表示方案i实施两年后柑桔产量达到灾前产量的倍数.
(1)写出的分布列;
(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?
(3)不管哪种方案,如果实施两年后柑桔产量达不到、恰好达到、超过灾前产量,预计利润分别为10万元、15万元、20万元.问实施哪种方案的平均利润更大?
7 . 为了解新研制的抗病毒药物的疗效,某生物科技有限公司进行动物试验.先对所有白鼠服药,然后对每只白鼠的血液进行抽样化验,若检测样本结果呈阳性,则白鼠感染病毒;若检测样本结果呈阴性,则白鼠未感染病毒.现随机抽取只白鼠的血液样本进行检验,有如下两种方案:
方案一:逐只检验,需要检验次;
方案二:混合检验,将只白鼠的血液样本混合在一起检验,若检验结果为阴性,则只白鼠未感染病毒;若检验结果为阳性,则对这只白鼠的血液样本逐个检验,此时共需要检验次.
(1)若,且只有两只白鼠感染病毒,采用方案一,求恰好检验3次就能确定两只感染病毒白鼠的概率;
(2)已知每只白鼠感染病毒的概率为.
①采用方案二,记检验次数为,求检验次数的数学期望;
②若,每次检验的费用相同,判断哪种方案检验的费用更少?并说明理由.
8 . 2020年1月15日教育部制定出台了《关于在部分高校开展基础学科招生改革试点工作的意见》(也称“强基计划”),《意见》宣布:2020年起不再组织开展高校自主招生工作,改为实行强基计划.强基计划主要选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.据悉强基计划的校考由试点高校自主命题,校考过程中通过笔试后才能进入面试环节.已知甲乙两所大学的笔试环节都设有三门考试科目且每门科目是否通过相互独立,若某考生报考甲大学,每门科目通过的概率均为,该考生报考乙大学,每门科目通过的概率依次为,其中.
(1)若,分别求出该考生报考甲乙两所大学在笔试环节恰好通过一门科目的概率;
(2)强基计划规定每名考生只能报考一所试点高校,若以笔试过程中通过科目数的数学期望为依据作出决策,当该考生更希望通过乙大学的笔试时,求的取值范围.
9 . 在一个文艺比赛中,由10名专业评审、10名媒体评审和10名大众评审各组成一个评委小组,给参赛选手打分.打分均采用100分制,下面是三组评委对选手小明的打分:
小组A85918793888497949586
小组B84879296899592919490
小组C95899596979392908994

(1)选择一个可以度量每一组评委打分相似性的量,并对每组评委的打分计算度量值;
(2)你能依据(1)的度量值判断小组A,B与C中哪一个更象是由专业人士组成的吗?
(3)已知选手小华专业评审得分的平均数和方差分别为,,媒体评审得分的平均数和方差分别为,,大众评审得分的平均数和方差分别为,,将这30名评审的平均分作为最终得分,求该选手最终的得分和方差.
10 . 2020年1月15日教育部制定出台了《关于在部分高校开展基础学科招生改革试点工作的意见》(也称“强基计划”),《意见》宣布:2020年起不再组织开展高校自主招生工作,改为实行强基计划.强基计划主要选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生,据悉强基计划的校考由试点高校自主命题,校考过程中通过笔试后才能进入面试环节.已知甲、乙两所大学的笔试环节都设有三门考试科目且每门科目是否通过相互独立.若某考生报考甲大学,每门科目通过的概率匀为,该考生报考乙大学,每门科目通过的概率依次,其中.
(1)若,求该考生报考乙大学在笔试环节恰好通过两门科目的概率;
(2)“强基计划”规定每名考生只能报考一所试点高校,若以笔试过程中通过科目数的数学期望为决策依据,则当该考生更希望通过乙大学的笔试时,求m的取值范围.