组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 152 道试题
解答题-证明题 | 困难(0.15) |
名校
解题方法
1 . 记集合无穷数列中存在有限项不为零,,对任意,设变换.定义运算:若,则
(1)若,用表示
(2)证明:
(3)若,证明:
2024-03-15更新 | 1834次组卷 | 4卷引用:拔高点突破01 新情景、新定义下的数列问题(七大题型)
2 . 已知为有穷正整数数列,且,集合.若存在,使得,则称可表数,称集合可表集.
(1)若,判定31,1024是否为可表数,并说明理由;
(2)若,证明:
(3)设,若,求的最小值.
解答题-证明题 | 困难(0.15) |
名校
3 . 已知:为有穷正整数数列,其最大项的值为,且当时,均有.设,对于,定义,其中,表示数集M中最小的数.
(1)若,写出的值;
(2)若存在满足:,求的最小值;
(3)当时,证明:对所有.
4 . 对于数列,如果存在正整数,使得对任意,都有,那么数列就叫做周期数列,叫做这个数列的周期.若周期数列满足:存在正整数,对每一个,都有,我们称数列为“同根数列”.
(1)判断数列是否为周期数列.如果是,写出该数列的周期,如果不是,说明理由;
(2)若是“同根数列”,且周期的最小值分别是,求的最大值.
2024-02-27更新 | 1908次组卷 | 2卷引用:压轴题05数列压轴题15题型汇总-1
解答题-问答题 | 困难(0.15) |
名校
5 . 设为整数.有穷数列的各项均为正整数,其项数为m).若满足如下两个性质,则称数列:①,且;②
(1)若数列,且,求m
(2)若数列,求的所有可能值;
(3)若对任意的数列,均有,求d的最小值.
2023-05-05更新 | 2124次组卷 | 6卷引用:北京卷专题18数列(解答题)
6 . 若存在常数,使得数列满足),则称数列为“数列”.
(1)判断数列:1,2,3,8,49是否为“数列”,并说明理由;
(2)若数列是首项为的“数列”,数列是等比数列,且满足,求的值和数列的通项公式;
(3)若数列是“数列”,为数列的前项和,,试比较的大小,并证明.
2023-12-14更新 | 1657次组卷 | 12卷引用:2024年高考数学全真模拟卷05(新题型地区专用)
22-23高三下·北京海淀·开学考试
名校
解题方法
7 . 若无穷数列的各项均为整数.且对于,都存在,使得,则称数列满足性质P
(1)判断下列数列是否满足性质P,并说明理由.
,2,3,…;
,2,3,….
(2)若数列满足性质P,且,求证:集合为无限集;
(3)若周期数列满足性质P,求数列的通项公式.
解答题-证明题 | 困难(0.15) |
名校
8 . 若有穷自然数数列满足如下两个性质,则称数列:
,其中,表示,这个数中最大的数;
,其中,表示,这个数中最小的数.
(1)判断:2,4,6,7,10是否为数列,说明理由;
(2)若数列,且成等比数列,求
(3)证明:对任意数列,存在实数,使得.(表示不超过的最大整数)
2024-04-09更新 | 1481次组卷 | 4卷引用:2024年北京高考数学真题变式题16-21
9 . 设集合是一个非空数集,对任意,定义,称为集合的一个度量,称集合为一个对于度量而言的度量空间,该度量空间记为.
定义1:若是度量空间上的一个函数,且存在,使得对任意,均有:,则称是度量空间上的一个“压缩函数”.
定义2:记无穷数列,若是度量空间上的数列,且对任意正实数,都存在一个正整数,使得对任意正整数,均有,则称是度量空间上的一个“基本数列”.
(1)设,证明:是度量空间上的一个“压缩函数”;
(2)已知是度量空间上的一个压缩函数,且,定义,证明:为度量空间上的一个“基本数列”.
10 . 对于数列,称为数列的一阶差分数列,其中.对正整数,称为数列阶差分数列,其中已知数列的首项,且的二阶差分数列.
(1)求数列的通项公式;
(2)设为数列的一阶差分数列,对,是否都有成立?并说明理由;(其中为组合数)
(3)对于(2)中的数列,令,其中.证明:.
2024-05-09更新 | 1371次组卷 | 7卷引用:拔高点突破01 新情景、新定义下的数列问题(七大题型)
共计 平均难度:一般