组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 33 道试题
1 . 初等数论中的四平方和定理最早由欧拉提出,后被拉格朗日等数学家证明.四平方和定理的内容是:任意正整数都可以表示为不超过四个自然数的平方和,例如正整数.设,其中均为自然数,则满足条件的有序数组的个数是__________.(用数字作答)
2024-05-04更新 | 785次组卷 | 3卷引用:湖南师范大学附属中学2024届高三下学期模拟(二)数学试卷
2 . 数学家Geminad Dandelin用一平面截圆锥后,在圆锥内放两个大小不同的小球,使得它们分别与圆锥侧面、截面相切,就可证明图中平面截圆锥得到的截面是椭圆(如图称为丹德林双球模型).若圆锥的轴截面为正三角形,则用与圆锥的轴成角的平面截圆锥所得椭圆的离心率为__________

   

2024-04-08更新 | 673次组卷 | 2卷引用:河北省多校联考2024届高三下学期适应性测试数学试题
3 . 假设视网膜为一个平面,光在空气中不折射,眼球的成像原理为小孔成像. 思考如下成像原理: 如图,地面内有圆,其圆心在线段上,且与线段交于不与重合的点地面,且点为人眼所在处,视网膜平面与直线垂直. 过点作平面平行于视网膜平面. 科学家已经证明,这种情况下圆上任意一点到点的直线与平面交点的轨迹(令为曲线)为椭圆或圆,且由于小孔成像,曲线与圆在视网膜平面上的影像是相似的,则当视网膜平面上的圆的影像为圆时,圆的半径____________. 当圆的半径满足时,视网膜平面上的圆的影像的离心率的取值范围为____________.

4 . 用平面截圆锥面,可以截出椭圆、双曲线、抛物线,那它们是不是符合圆锥曲线的定义呢?比利时数学家旦德林用一个双球模型给出了证明.如图1,在一个圆锥中放入两个球,使得它们都与圆锥面相切,一个平面过圆锥母线上的点且与两个球都相切,切点分别记为.这个平面截圆锥面得到交线上任意一点,过点的母线与两个球分别相切于点,因此有,而是图中两个圆锥母线长的差,是一个定值,因此曲线是一个椭圆.如图2,两个对顶圆锥中,各有一个球,这两个球的半径相等且与圆锥面相切,已知这两个圆锥的母线与轴夹角的正切值为,球的半径为4,平面与圆锥的轴平行,且与这两个球相切于两点,记平面与圆锥侧面相交所得曲线为,则曲线的离心率为__________.

2024-03-12更新 | 604次组卷 | 3卷引用:江西省南昌市2024届高三第一次模拟测试数学试题
5 . 三等分角大约是在公元前五世纪由古希腊人提出来的,它和“立方倍积问题”“化圆为方问题”并称为“古代三大几何难题”.公元六世纪时,数学家帕普斯曾证明用一固定的双曲线可以解决“三等分角问题”.某同学在学习过程中,借用帕普斯的研究,使某锐角的顶点与坐标原点重合,点在第四象限,且点在双曲线的一条渐近线上,而在第一象限内交于点.以点为圆心,为半径的圆与在第四象限内交于点,设的中点为,则.若,则的值为__________.
2024-03-31更新 | 250次组卷 | 1卷引用:贵州省毕节市织金县部分学校2024届高三下学期一模考试数学试题(一)
填空题-单空题 | 适中(0.65) |
名校
解题方法
6 . 数论领域的四平方和定理最早由欧拉提出,后被拉格朗日等数学家证明.四平方和定理的内容是:任意正整数都可以表示为不超过四个自然数的平方和,例如正整数.设,其中abcd均为自然数,则满足条件的有序数组的个数是__________
2023-04-05更新 | 2062次组卷 | 9卷引用:江苏省南京师范大学附属中学2022-2023学年高三一模适应性考试数学试题
7 . 科拉茨是德国数学家,他在1937年提出了一个著名的猜想:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘3加1(即),不断重复这样的运算,经过有限步后,一定可以得到1.这是一个很有趣的猜想,但目前还没有证明或否定.如果对正整数(首项)按照上述规则施行变换后的第8项为1(注:1可以多次出现),则满足条件的的所有不同值的和为___________.
8 . 我们常常运用对同一个量算两次的方法来证明组合恒等式,如:从装有编号为个球的口袋中取出个球,共有种取法.在种取法中,不取号球有种取法;取号球有种取法.所以.试运用此方法,写出如下等式的结果:___________.
2022-10-17更新 | 1614次组卷 | 9卷引用:辽宁省沈阳市东北育才学校2023届高三高考适应性测试(二)数学试题
9 . 如图是数学家Germinal Dandelin用来证明一个平面截圆锥得到的截口曲线是椭圆的模型.在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面与截面都相切,设图中球,球的半径分别为4和2,球心距离,截面分别与球,球相切于点是截口椭圆的焦点),则此椭圆的离心率等于__________.

2022-12-21更新 | 3609次组卷 | 15卷引用:广东省广州市2023届高三一模数学试题
10 . 公元前6世纪,古希腊毕达哥拉斯学派已经知道五种正多面体,即正四面体、正六面体、正八面体、正十二面体、正二十面体.后来,柏拉图学派的泰阿泰德证明出正多面体总共只有上述五种.如图所示的就是正八面体图形,从该正八面体的6个顶点中随机抽取2个,则这2个顶点的连线是该正八面体的一条棱的概率是______.
共计 平均难度:一般