组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 23 道试题
1 . “勾股数”,也被称为毕达哥拉斯树,是根据勾股定理所画出来的一个可以无限重复的树形图形.如图所示,以边长为4的正方形的一边为直角三角形的斜边向外作一个等腰直角三角形,再以等腰直角三角形的两直角边为正方形的边长向外作两个正方形,如此继续,若得到的“勾股树”上所存正方形的面积为96,则“勾股树”上所有正方形的个数为(       
A.63B.64C.127D.128
2024-02-11更新 | 178次组卷 | 1卷引用:江苏省淮安市2023-2024学年高二上学期期末调研测试数学试卷
2 . 希罗平均数(Heronianmean)是两个非负实数的一种平均,若是两个非负实数,则它们的希罗平均数.记,则从小到大的关系为______.(用“≤”连接)
3 . 魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海岛的高.如图1,点在水平线上,是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,称为“表距”,都称为“表目距”,的差称为“表目距的差”,则海岛的高,某同学受此法的启发设计了另一种测量此山高度的方案(如图2);他站在水平线上,同时在水平线上放一个小镜子(视为点),他在距离镜子米点时,通过镜子看到了山顶,然后沿水平线向靠近山的方向走了米,到达点,再将镜子放在距离自己米的前方点处,此时又看到了山顶,若此人的眼睛到水平线的距离为米,则此山的高度约为(       )米
   
A.B.C.D.
2023-12-03更新 | 387次组卷 | 2卷引用:江苏省淮安市淮阴中学、姜堰中学等三校2024届高三上学期12月阶段性测试数学试题
4 . 中国文化之美照亮生活,宋代的几何图案(图1)注重理性和逻辑的文化风气,中式美学的另一种浪漫,蕴含着数学对称之美.几何图案由函数,与函数)图像(如图2)分别关于轴、轴及原点对称所得(如图3).
         
(1)若图3构成正八边形,求实数m的值;
(2)若关于的方程有两个不相等实数根
①求实数m的取值范围;
②求的最小值.
2023-11-13更新 | 299次组卷 | 3卷引用:江苏省淮安市2023-2024学年高一上学期期中数学试题
5 . 杭州第19届亚运会的主会场——杭州奥体中心体育场,又称“大莲花”(如图1所示).会场造型取意于杭州丝绸纹理与纺织体系,建筑体态源于钱塘江水的动态,其简笔画如图2所示.一同学初学简笔画,先画了一个椭圆与圆弧的线稿,如图3所示.若椭圆的方程为,下顶点为为坐标原点,为圆上任意一点,满足,则点的坐标为__________;若为椭圆上一动点,当取最大值时,点恰好有两个,则的取值范围为__________
6 . 法国天文学家乔凡尼·多美尼科·卡西尼在研究土星及其卫星的运动规律时,发现了平面内到两个定点的距离之积为常数的点的轨迹,并称之为卡西尼卵形线.在平面直角坐标系中,两个定点,曲线是到两个定点的距离之积为的点的轨迹,以下结论正确的有(       
A.曲线关于轴对称
B.曲线可能过坐标原点
C.为曲线上任意一点,当时,点纵坐标的取值范围为
D.若曲线与椭圆有公共点,则
2023-11-09更新 | 757次组卷 | 4卷引用:江苏省淮安市2023-2024学年高二上学期11月期中数学试题

7 . 谢尔宾斯基(Sierpinski)三角形是一种分形,它的构造方法如下:取一个实心等边三角形(如图1),沿三边中点的连线,将它分成四个小三角形,挖去中间小三角形(如图2),对剩下的三个小三角形继续以上操作(如图3),按照这样的方法得到的三角形就是谢尔宾斯基三角形.如果图1三角形的边长为2,则图4被挖去的三角形面积之和是(       

   

A.B.C.D.
2023-09-15更新 | 1156次组卷 | 6卷引用:江苏省淮安市2023-2024学年高三上学期第一次调研测试数学试题
8 . 《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至多有1个阴数的概率为(  )

   

A.B.C.D.
2023-08-13更新 | 788次组卷 | 7卷引用:江苏省淮安市涟水县第一中学2022-2023学年高二下学期5月月考数学试题

9 . 我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有2个阳爻且2个阳爻不相邻的概率是(       

   

A.B.C.D.
2023-06-29更新 | 375次组卷 | 3卷引用:江苏省淮安市2022-2023学年高二下学期期末数学试题
10 . 1626年,阿贝尔特格洛德最早推出简写的三角符号:(正割),1675年,英国人奥屈特最早推出余下的简写三角符号:(余割),但直到1748年,经过数学家欧拉的引用后,才逐渐通用起来,其中.若,且,则______.
2023-06-20更新 | 164次组卷 | 2卷引用:江苏省淮安市楚州中学、新马中学2022-2023学年高一下学期期中联考数学试题
共计 平均难度:一般