组卷网 > 知识点选题 >
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 420 道试题
1 . 下表是离散型随机变量的分布列,则常数的值是(       

X

3

4

5

9

P

A.B.C.D.
2023-09-07更新 | 1230次组卷 | 35卷引用:重庆市2018-2019学年高二5月数学(理)试题
2 . 甲、乙两人下象棋,赢了得3分,平局得1分,输了得0分,共下三局.用ξ表示甲的得分,则{ξ=3}表示(       
A.甲赢三局
B.甲赢一局
C.甲、乙平局三次
D.甲赢一局输两局或甲、乙平局三次
2023-09-02更新 | 751次组卷 | 35卷引用:2018-2019学年北师大版高中数学选修2-3同步配套(课件+练习):2.1.1
3 . 已知离散型随机变量的概率分布列如下表:则数学期望等于(       

A.B.C.D.
2024-01-02更新 | 1208次组卷 | 19卷引用:广东省梅州市梅县区富力足球学校2019-2020学年高二下学期线上教学检测数学试题
4 . 一个口袋里装有大小相同的5个小球,其中红色有2个,其余3个颜色各不相同.现从中任意取出3个小球,其中恰有2个小球颜色相同的概率是_____;若变量X为取出的三个小球中红球的个数,则X的均值EX)=_____
2023-07-02更新 | 506次组卷 | 10卷引用:【校级联考】浙江省金华十校2019届高三上学期期末联考数学试题
5 . 随机变量X的分布列如表所示,若,则_________.
X-101
Pab
2023-01-30更新 | 1958次组卷 | 25卷引用:沪教版(2020) 一轮复习 堂堂清 第九单元 综合练习
20-21高二下·浙江·课后作业
单选题 | 容易(0.94) |
名校
6 . 已知随机变量X的分布列如表(其中a为常数):

X

0

1

2

3

4

5

P

0.1

0.1

a

0.3

0.2

0.1

等于(       
A.0.4 B.0.5 C.0.6 D.0.7
2022-09-03更新 | 2871次组卷 | 28卷引用:广东省台山市华侨中学2020-2021学年高二上学期第一次月考数学试题
7 . 有歌唱道:“江西是个好地方,山清水秀好风光.”现有甲、乙两位游客慕名来到江西旅游,准备从庐山、三清山、龙虎山和明月山四个著名旅游景点中随机选择一个景点游玩,记事件为“甲和乙至少一人选择庐山”,事件为“甲和乙选择的景点不同”,则       
A.B.C.D.
2022-11-30更新 | 1239次组卷 | 23卷引用:江西省重点中学协作体2020届高三第一次联考数学(理科)试题
8 . 袋内装有大小、形状完全相同的3个白球和2个黑球,从中不放回地摸球,设事件A=“第一次摸到白球”,事件B=“第二次摸到白球”,事件C=“第一次摸到黑球”,则下列说法中正确的是(       
A.AB是互斥事件B.AB不是相互独立事件
C.BC是对立事件D.AC是相互独立事件
2022-11-25更新 | 2000次组卷 | 15卷引用:山东济南市历城第二中学2019-2020学年高一下学期学情检测数学试题
9 . 为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为;1小时以上且不超过2小时离开的概率分别为;两人滑雪时间都不会超过3小时.
(1)求甲、乙两人所付滑雪费用相同的概率;
(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与均值E(ξ),方差D(ξ).
2022-11-08更新 | 1991次组卷 | 32卷引用:专题11.9 离散型随机变量的均值与方差(讲)【理】-《2020年高考一轮复习讲练测》
10 . 甲、乙两人进行围棋比赛,比赛要求双方下满五盘棋,已知第一盘棋甲赢的概率为,由于心态不稳,若甲赢了上一盘棋,则下一盘棋甲赢的概率依然为,若甲输了上一盘棋,则下一盘棋甲赢的概率就变为.已知比赛没有和棋,且前两盘棋都是甲赢.
(1)求第四盘棋甲赢的概率;
(2)求比赛结束时,甲恰好赢三盘棋的概率.
2022-11-06更新 | 3109次组卷 | 20卷引用:海南省2020届高三年级第五次模拟考试数学试题
共计 平均难度:一般