组卷网 > 章节选题 > 选修1-1
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 1269 道试题
1 . 对于一个函数和一个点,令,若取到最小值的点,则称的“最近点”.
(1)对于,求证:对于点,存在点,使得点的“最近点”;
(2)对于,请判断是否存在一个点,它是的“最近点”,且直线在点处的切线垂直;
(3)已知在定义域R上存在导函数,且函数 在定义域R上恒正,设点.若对任意的,存在点同时是的“最近点”,试判断的单调性.
昨日更新 | 707次组卷 | 3卷引用:2024年高考数学真题完全解读(上海卷)
2 . 已知双曲线左右顶点分别为,过点的直线交双曲线两点.
(1)若离心率时,求的值.
(2)若为等腰三角形时,且点在第一象限,求点的坐标.
(3)连接并延长,交双曲线于点,若,求的取值范围.
昨日更新 | 687次组卷 | 3卷引用:2024年高考数学真题完全解读(上海卷)
3 . 已知函数的定义域为R,定义集合,在使得的所有中,下列成立的是(       
A.存在是偶函数B.存在处取最大值
C.存在是严格增函数D.存在处取到极小值
昨日更新 | 716次组卷 | 3卷引用:2024年高考数学真题完全解读(上海卷)
4 . 已知函数.
(1)当时,求的最小值;
(2)①求证:有且仅有一个极值点;
②当时,设的极值点为,若.求证:
2024-06-08更新 | 642次组卷 | 3卷引用:专题15 导数与三角函数联袂【练】
5 . 已知抛物线上的动点到其焦点的距离的最小值为
(1)求抛物线的方程;
(2)过抛物线上一点作抛物线的切线,分别交轴于点,交轴于点.点在抛物线上,点在线段上,满足能;点在线段上,满足,且,线段交于点,当点在抛物线上移动时,求点的轨迹方程
(3)将向左平移个单位,得到,已知,过点作直线.设,求的值
6 . 如图,在平面直角坐标系中,轴上关于原点对称的两个点,过点倾斜角为的直线与抛物线交于两点,且

(1)若的焦点,求证:
(2)过点轴的垂线,垂足为,若,求直线的方程.
2024-06-03更新 | 499次组卷 | 3卷引用:第一套 艺体生新高考全真模拟 (三模重组卷)
7 . 法国数学家弗朗索瓦·韦达发现了一元二次方程的根与系数之间的关系,将其推广到高次方程,并在其著作《论方程的识别与订正》中正式发表,后来人们把这个关系称为韦达定理,即如果是关于x的实系数一元n次方程在复数集C内的n个根,则
试运用韦达定理解决下列问题:
(1)已知,求的最小值;
(2)已知,关于x的方程有三个实数根,其中至少有一个实效根在区间内,求的最大值.
2024-06-03更新 | 204次组卷 | 2卷引用:专题14 学科素养与综合问题(解答题19)
8 . 拉格朗日中值定理是微分学的基本定理之一,其内容为:如果函数在闭区间上的图象连续不断,在开区间内的导数为,那么在区间内存在点,使得成立.设,其中为自然对数的底数,.易知,在实数集上有唯一零点,且

(1)证明:当时,
(2)从图形上看,函数的零点就是函数的图象与轴交点的横坐标.直接求解的零点是困难的,运用牛顿法,我们可以得到零点的近似解:先用二分法,可在中选定一个作为的初始近似值,使得,然后在点处作曲线的切线,切线与轴的交点的横坐标为,称的一次近似值;在点处作曲线的切线,切线与轴的交点的横坐标为,称的二次近似值;重复以上过程,得的近似值序列
①当时,证明:
②根据①的结论,运用数学归纳法可以证得:为递减数列,且.请以此为前提条件,证明:
2024-05-31更新 | 637次组卷 | 4卷引用:【一题多变】零点估计 牛顿切线
9 . 已知函数
(1)求函数在区间上的极值点的个数.
(2)“”是一个求和符号,例如,等等.英国数学家布鲁克·泰勒发现,当时,,这就是麦克劳林展开式在三角函数上的一个经典应用.
证明:(i)当时,对,都有
(ii)
2024-05-31更新 | 258次组卷 | 2卷引用:专题11 利用泰勒展开式证明不等式【练】
10 . 阅读材料一:“装错信封问题”是由数学家约翰·伯努利(Johann Bernoulli,1667~1748)的儿子丹尼尔·伯努利提出来的,大意如下:一个人写了封不同的信及相应的个不同的信封,他把这封信都装错了信封,问都装错信封的这一情况有多少种?后来瑞士数学家欧拉(Leonhard Euler,1707~1783)给出了解答:记都装错封信的情况为种,可以用全排列减去有装正确的情况种数,结合容斥原理可得公式:,其中
阅读材料二:英国数学家泰勒发现的泰勒公式有如下特殊形式:当阶可导,则有:,注表示阶导数,该公式也称麦克劳林公式.阅读以上材料后请完成以下问题:
(1)求出的值;
(2)估算的大小(保留小数点后2位),并给出用表示的估计公式;
(3)求证:,其中
2024-05-31更新 | 863次组卷 | 2卷引用:专题11 利用泰勒展开式证明不等式【练】
共计 平均难度:一般