组卷网 > 章节选题 > 第三章 数系的扩充与复数的引入
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 32 道试题
1 . 我们把(其中)称为一元次多项式方程.代数基本定理:任何一元次复系数多项式方程(即为实数)在复数集内至少有一个复数根;由此推得,任何一元次复系数多项式方程在复数集内有且仅有个复数根(重根按重数计算).那么我们由代数基本定理可知:任何一元次复系数多项式在复数集内一定可以分解因式,转化为个一元一次多项式的积.即,其中为方程的根.进一步可以推出:在实系数范围内(即为实数),方程有实数根,则多项式必可分解因式.例如:观察可知,是方程的一个根,则一定是多项式的一个因式,即,由待定系数法可知,.
(1)在复数集内解方程:
(2)设,其中,且.
(i)分解因式:
(ii)记点的图象与直线在第一象限内离原点最近的交点.求证:当时,.
7日内更新 | 95次组卷 | 1卷引用:湖北省武汉市部分重点中学2023-2024学年高一下学期4月期中联考数学试题
2 . 函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.已知函数
(1)若函数的对称中心为,求函数的解析式.
(2)由代数基本定理可以得到:任何一元次复系数多项式在复数集中可以分解为n个一次因式的乘积.进而,一元n次多项式方程有n个复数根(重根按重数计).如设实系数一元二次方程,在复数集内的根为,则方程可变形为,展开得:则有,即,类比上述推理方法可得实系数一元三次方程根与系数的关系.
①若,方程在复数集内的根为,当时,求的最大值;
②若,函数的零点分别为,求的值.
7日内更新 | 126次组卷 | 1卷引用:安徽省合肥一六八中学2024届高三下学期检测(一)数学试题
3 . 对于非空集合,定义其在某一运算(统称乘法)“×”下的代数结构称为“群”,简记为.而判断是否为一个群,需验证以下三点:
1.(封闭性)对于规定的“×”运算,对任意,都须满足
2.(结合律)对于规定的“×”运算,对任意,都须满足
3.(恒等元)存在,使得对任意
4.(逆的存在性)对任意,都存在,使得
记群所含的元素个数为,则群也称作“阶群”.若群的“×”运算满足交换律,即对任意,我们称为一个阿贝尔群(或交换群).
(1)证明:所有实数在普通加法运算下构成群
(2)记为所有模长为1的复数构成的集合,请找出一个合适的“×”运算使得在该运算下构成一个群,并说明理由;
(3)所有阶数小于等于四的群是否都是阿贝尔群?请说明理由.
2024-03-07更新 | 550次组卷 | 3卷引用:2024届高三新高考改革数学适应性练习(九省联考题型)
4 . 设M是由复数组成的集合,对M的一个子集A,若存在复平面上的一个圆,使得A的所有数在复平面上对应的点都在圆内或圆周上,且中的数对应的点都在圆外,则称A是一个M的“可分离子集”.
(1)判断是否是的“可分离子集”,并说明理由;
(2)设复数z满足,其中分别表示z的实部和虚部.证明:的“可分离子集”当且仅当
2024-02-29更新 | 335次组卷 | 2卷引用:2024年集英苑冬季竞赛高中数学试题
智能选题,一键自动生成优质试卷~
5 . 对于函数,分别在处作函数的切线,记切线与轴的交点分别为,记为数列的第n项,则称数列为函数的“切线-轴数列”,同理记切线与轴的交点分别为,记为数列的第n项,则称数列为函数的“切线-轴数列”
(1)设函数,记“切线-轴数列”为,记的前n项和,求.
(2)设函数,记“切线-轴数列”为,猜想的通项公式并证明你的结论.
(3)设复数均为不为0的实数,记的共轭复数,设,记“切线-轴数列”为,求证:对于任意的不为0的实数,总有成立.
2024-01-01更新 | 355次组卷 | 6卷引用:上海市普陀区桃浦中学2022-2023学年高二下学期期中数学试题
6 . 已知i是虚数单位,a,设复数,且.
(1)若为纯虚数,求
(2)若复数在复平面上对应的点分别为AB,且O为复平面的坐标原点.
①是否存在实数ab,使向量逆时针旋转后与向量重合,如果存在,求实数ab的值;如果不存在,请说明理由;
②若OAB三点不共线,记的面积为,求及其最大值.
2023-07-13更新 | 736次组卷 | 6卷引用:辽宁省锦州市2022-2023学年高一下学期期末数学试题
7 . 通过平面直角坐标系,我们可以用有序实数对表示向量.类似的,我们可以把有序复数对看作一个向量,记,则称为复向量.类比平面向量的相关运算法则,对于,我们有如下运算法则:
       
             .
(1)设,求.
(2)由平面向量的数量积满足的运算律,我们类比得到复向量的相关结论:

       .
试判断这三个结论是否正确,并对正确的结论予以证明.
(3)若,集合.对于任意的,求出满足条件,并将此时的记为,证明对任意的,不等式恒成立.
根据对上述问题的解答过程,试写出一个一般性的命题(不需要证明).
2023-07-06更新 | 366次组卷 | 4卷引用:上海市闵行区2022-2023学年高一下学期期末数学试题
8 . 设是一个关于复数z的表达式,若(其中xy为虚数单位),就称f将点f对应”到点.例如将点f对应”到点
(1)若f对应”到点,点f对应”到点,求点的坐标;
(2)设常数,若直线l,是否存在一个有序实数对,使得直线l上的任意一点“对应”到点后,点Q仍在直线上?若存在,试求出所有的有序实数对;若不存在,请说明理由;
(3)设常数,集合,若满足:①对于集合D中的任意一个元素z,都有;②对于集合A中的任意一个元素,都存在集合D中的元素z使得.请写出满足条件的一个有序实数对,并论证此时的满足条件.
2023-07-05更新 | 638次组卷 | 5卷引用:上海市控江中学2022-2023学年高一下学期期末数学试题
9 . 已知常数,集合,若,则t的取值范围是____________.
2023-07-05更新 | 637次组卷 | 3卷引用:上海市控江中学2022-2023学年高一下学期期末数学试题
10 . 利用平面向量的坐标表示,可以把平面向量的概念推广为坐标为复数的“复向量”,即可将有序复数对(其中)视为一个向量,记作.类比平面向量可以定义其运算,两个复向量的数量积定义为一个复数,记作,满足,复向量的模定义为
(1)设为虚数单位,求复向量的模;
(2)设是两个复向量,
①已知对于任意两个平面向量,(其中),成立,证明:对于复向量也成立;
②当时,称复向量平行.若复向量平行(其中为虚数单位,),求复数
2023-07-04更新 | 469次组卷 | 6卷引用:上海市上海中学2022-2023学年高一下学期期末数学试题
共计 平均难度:一般