组卷网 > 知识点选题 > 椭 圆
解析
| 共计 8565 道试题
1 . 已知分别是椭圆的左、右焦点,A为椭圆上一动点,B为椭圆的上顶点,是边长为2的正三角形.下列说法正确的是(       
A.离心率
B.使得为等腰三角形的点A有4个
C.当直线倾斜角为时,周长为6
D.将椭圆C进行旋转得到椭圆,使得B为焦点,则C有且仅有2个交点
今日更新 | 0次组卷 | 1卷引用:湖南师范大学附属中学2023-2024学年高二下学期期中考试数学试题
2 . 假设视网膜为一个平面,光在空气中不折射,眼球的成像原理为小孔成像. 思考如下成像原理: 如图,地面内有圆,其圆心在线段上,且与线段交于不与重合的点地面,且点为人眼所在处,视网膜平面与直线垂直. 过点作平面平行于视网膜平面. 科学家已经证明,这种情况下圆上任意一点到点的直线与平面交点的轨迹(令为曲线)为椭圆或圆,且由于小孔成像,曲线与圆在视网膜平面上的影像是相似的,则当视网膜平面上的圆的影像为圆时,圆的半径____________. 当圆的半径满足时,视网膜平面上的圆的影像的离心率的取值范围为____________.

今日更新 | 7次组卷 | 1卷引用:四川省成都市实验外国语学校2023-2024学年高二上学期期末能力测评数学试题
3 . 已知椭圆的离心率为上的不同两点,且直线的斜率为,当直线过原点时,.
(1)求椭圆的标准方程;
(2)设,点都不在轴上,连接,分别交两点,求点到直线的距离的最大值.
今日更新 | 84次组卷 | 1卷引用:江西省萍乡市2024届高三二模考试数学试卷
4 . 已知椭圆的离心率为,且过点.若斜率为的直线与椭圆相切于点,过直线上异于点的一点,作斜率为的直线与椭圆交于两点,定义为点处的切割比,记为
(1)求的方程;
(2)证明:与点的坐标无关;
(3)若,且为坐标原点),则当时,求直线的方程.
今日更新 | 18次组卷 | 1卷引用:高三数学考前押题卷2
5 . 已知是椭圆的左、右焦点,上一点.过点作直线的垂线,过点作直线的垂线.若的交点上(均在轴上方,且,则的离心率为__________
昨日更新 | 569次组卷 | 2卷引用:江苏省南通、扬州、泰州七市2024届高三第三次调研测试数学试题
6 . “用一个不垂直于圆锥的轴的平面截圆锥,当圆锥的轴与截面所成的角不同时,可以得到不同的截口曲线”.利用这个原理,小明在家里用两个射灯(射出的光锥视为圆锥)在墙上投影出两个相同的椭圆(图1),光锥的一条母线恰好与墙面垂直.图2是一个射灯投影的直观图,圆锥的轴截面是等边三角形,椭圆所在平面为,则椭圆的离心率为(       

A.B.C.D.
昨日更新 | 838次组卷 | 3卷引用:北京市丰台区2023-2024学年高三下学期综合练习(二)数学试题
7 . 已知点在椭圆上,的两焦点的距离之和为
(1)求的方程;
(2)过抛物线上一动点,作的两条切线分别交于另外两点
(ⅰ)当的顶点时,求直线轴上的截距(结果用含有的式子表示);
(ⅱ)是否存在,使得直线总与相切.若存在,求的值;若不存在,说明理由.
昨日更新 | 195次组卷 | 1卷引用:山东省济南市2024届高三下学期高考针对性训练(5月模拟)数学试题
8 . 已知椭圆的右顶点A和上顶点为B关于直线对称.
(1)求椭圆C的标准方程;
(2)点PQ为椭圆C上两个动点,直线的斜率之积为D为垂足,求的最小值.
昨日更新 | 180次组卷 | 1卷引用:广东省高州市2024届高三下学期适应性考试数学试题
9 . 阿波罗尼斯是古希腊著名数学家,他的主要研究成果集中在他的代表作《圆锥曲线论》一书中,阿波罗尼斯圆是他的研究成果之一,指的是平面内动点与两定点的距离的比值是个常数,那么动点的轨迹就是阿波罗尼斯圆,圆心在直线上.已知动点的轨迹是阿波罗尼斯圆,其方程为,定点分别为椭圆的右焦点与右顶点,且椭圆的离心率为.

   

(1)求椭圆的标准方程;
(2)如图,过点斜率为的直线与椭圆相交于(点轴上方)两点,点是椭圆上异于的两点,平分平分.
①求的取值范围;
②将点看作一个阿波罗尼斯圆上的三点,若外接圆的周长为,求直线的方程.
昨日更新 | 149次组卷 | 1卷引用:安徽省皖南八校2024届高三4月第三次联考数学试卷
10 . 椭圆的左、右顶点分别为,点在椭圆上第一象限内,记,存在圆经过点,且,则椭圆的离心率为__________.
昨日更新 | 155次组卷 | 1卷引用:安徽省皖南八校2024届高三4月第三次联考数学试卷
共计 平均难度:一般