组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 22 道试题
1 . 对1个单位质量的含污物体进行清洗,清洗前其清洁度(含污物体的清洁度定义为:)为0.8,要求洗完后的清洁度是0.99.有两种方案可供选择,方案甲:一次清洗;方案乙:两次清洗.该物体初次清洗后受残留水等因素影响,其质量变.设用单位质量的水初次清洗后的清洁度是,用单位质量的水第二次清洗后的清洁度是,其中是该物体初次清洗后的清洁度.
(1)分别求出方案甲以及时方案乙的用水量,并比较哪一种方案用水量较少;
(2)若采用方案乙,当为某定值时,如何安排初次与第二次清洗的用水量,使总用水量最少?并讨论取不同数值时对最少总用水量多少的影响.
2 . 某新型双轴承电动机需要装配两个轴承才能正常工作,且两个轴承互不影响.现计划购置甲,乙两个品牌的轴承,两个品牌轴承的使用寿命及价格情况如下表:

品牌

价格(元/件)

使用寿命(月)

已知甲品牌使用个月或个月的概率均为,乙品牌使用个月或个月的概率均为
(1)若从件甲品牌和件乙品牌共件轴承中,任选件装入电动机内,求电动机可工作时间不少于个月的概率;
(2)现有两种购置方案,方案一:购置件甲品牌;方案二:购置件甲品牌和件乙品牌(甲、乙两品牌轴承搭配使用).试从性价比(即电动机正常工作时间与购置轴承的成本之比)的角度考虑,选择哪一种方案更实惠?
2021-04-29更新 | 2676次组卷 | 6卷引用:山东省泰安市2021届高三二模数学试题
3 . 在某地区进行某种疾病调查,需要对其居民血液进行抽样化验,若结果呈阳性,则患有该疾病;若结果为阴性,则未患有该疾病.现有n)个人,每人一份血液待检验,有如下两种方案:
方案一:逐份检验,需要检验n次;
方案二:混合检验,将n份血液分别取样,混合在一起检验,若检验结果呈阴性,则n个人都未患有该疾病;若检验结果呈阳性,再对n份血液逐份检验,此时共需要检验n+1次.
(1)若,且其中两人患有该疾病,采用方案一,求恰好检验3次就能确定患病两人的概率;
(2)已知每个人患该疾病的概率为
(ⅰ)若两种方案检验总次数的期望值相同,求p关于n的函数解析式
(ⅱ)若,且每单次检验费用相同,为降低总检验费用,选择哪种方案更好?试说明理由.
2022-07-10更新 | 1295次组卷 | 2卷引用:山东省济南市2021-2022学年高二下学期期末数学试题
4 . “东方味王”餐饮公司入驻某校,为满足学生餐饮需求、丰富菜品花色,研发了一套新产品.该产品每份成本6元,售价8元,产品保质期为两天,若两天内未售出,则产品过期报废.公司为决策每两天的产量,先进行试销,统计并整理连续30天的日销量(单位:百份),假设该新产品每日销量相互独立,得到如下的柱状图:

(1)以试销统计的频率为概率,记每两天中销售该新产品的总份数为(单位:百份),求的分布列和数学期望;
(2)以该新产品两天内获得利润较大为决策依据,在每两天生产配送27百份,28百份两种方案中应选择哪种?
2022-07-16更新 | 801次组卷 | 5卷引用:山东省烟台市招远市招远第一中学2022-2023学年高二下学期期中数学试题
5 . 某医疗机构,为了研究某种病毒在人群中的传播特征,需要检测血液是否为阳性.若现有份血液样本,每份样本被取到的可能性相同,检测方式有以下两种:
方式一:逐份检测,需检测次;
方式二:混合检测,将其中份血液样本分别取样混合在一起检测,若检测结果为阴性,说明这份样本全为阴性,则只需检测1次;若检测结果为阳性,则需要对这份样本逐份检测,因此检测总次数为次,假设每份样本被检测为阳性或阴性是相互独立的,且每份样本为阳性的概率是.
(1)在某地区,通过随机检测发现该地区人群血液为阳性的概率约为0.8%.为了调查某单位该病毒感染情况,随机选取50人进行检测,有两个分组方案:
方案一:将50人分成10组,每组5人;
方案二:将50人分成5组,每组10人.
试分析哪种方案的检测总次数更少?
(取)
(2)现取其中份血液样本,若采用逐份检验方式,需要检测的总次数为;采用混合检测方式,需要检测的总次数为.若,试解决以下问题:
①确定关于的函数关系;
②当为何值时,取最大值并求出最大值.
6 . 给出下列命题,其中正确的命题有(       
A.若.则
B.公共汽车上有10位乘客,沿途5个车站,乘客下车的可能方式有
C.从6双不同颜色的鞋子中任取4只,其中恰好只有一双同色的取法有240种
D.西部某县委将7位大学生志愿者男3女)分成两组,分配到两所小学支教,若要求女生不能单独成组,且每组最多5人,则不同的分配方案共有104种
7 . 某学校数学实践小组为该校一块长方形空地设计种树方案,在坐标纸上设计如下:第棵树种在点处,其中,当时,,[]表示不大于x的最大整数,按此设计方案,第3株树种植点的坐标为___________;第2025棵树种植点的坐标为____________.
2024-05-11更新 | 216次组卷 | 2卷引用:山东省潍坊市2023-2024学年高二下学期期中质量监测数学试题
8 . 已知的内角所对边分别为.若内部有一个圆心为,半径为米的圆,它沿着的边内侧滚动一周,且始终保持与三角形的至少一条边相切.

   

(1)若为边长是16米的等边三角形,求圆心经过的路程;
(2)若用28米的材料刚好围成这个三角形,请你设计一种的围成方案,使得圆心经过的路程最大并求出该最大值(若为正数,则,当且仅当时取等号).
9 . 某精密仪器生产厂家计划对本厂工人进行技能考核,方案如下:每名工人连续生产出10件产品,若经检验后有不低于9件的合格产品,则将该工人技能考核评为合格等次,考核结束;否则,将不合格产品交回该工人,调试后经再次检验,若全部合格,则将该工人技能考核评为合格,考核结束,否则,将该工人技能考核评为不合格,需脱产进行培训.设工人甲生产或调试每件产品合格的概率均为,且生产或调试每件产品是否合格互不影响.
(1)求工人甲只生产10件产品即结束考核的概率;
(2)若X表示工人甲生产和调试的产品件数之和,求随机变量X的数学期望
2023-04-27更新 | 1262次组卷 | 4卷引用:山东省烟台市2022-2023学年高二下学期期中数学试题
共计 平均难度:一般